The vibrational Stark effect (VSE) has proven to be an effective method for the study of electric fields in proteins via the use of infrared probes. In order to explore the use of VSE in nucleic acids, the Stark spectroscopy of nine structurally diverse nucleosides was investigated. These nucleosides contained nitrile or azide probes in positions that correspond to both the major and minor grooves of DNA. The nitrile probes showed better characteristics and exhibited absorption frequencies over a broad range; i.e., from 2253 cm −1 for 2′-O-cyanoethyl ribonucleosides 8 and 9 to 2102 cm −1 for a 13 C-labeled 5-thiocyanatomethyl-2'-deoxyuridine 3c. The largest Stark tuning rate observed was |Δµ| = 1.1 cm −1 /(MV/cm) for both 5-cyano-2′-deoxyuridine 1 and N2-nitrile-2′-deoxyguanosine 7. The latter is a particularly attractive probe because of its high extinction coefficient (ε = 412 M −1 cm −1 ) and ease of incorporation into oligomers.
The charge redistribution upon photoexcitation is investigated for a series of pyrene photoacids to better understand the driving force behind excited-state proton-transfer processes. The changes in electric dipole for the lowest two electronic transitions ( 1 L b and 1 L a ) are measured by Stark spectroscopy, and the magnitudes of charge transfer of the protonated and deprotonated states are compared. For neutral photoacids studied here, the results show that the amount of charge transfer depends more upon the electronic state that is excited than the protonation state. Transitions from the ground state to the 1 L b state result in a much smaller change in electric dipole than transitions to the 1 L a state. Conversely, for the cationic (ammonium) photoacid studied, photoexcitation of a particular electronic state results in much smaller charge transfer for the protonated state than for the deprotonated state.
Many mixed-valence systems involve two or more states with different electric dipole moments whose magnitudes depend upon the charge transfer distance and the degree of delocalization; these systems can be interconverted by excitation of an intervalence charge transfer transition. Stark spectroscopy involves the interaction between the change in dipole moment of a transition and an electric field, so the Stark spectra of mixed-valence systems are expected to provide quantitative information on the degree of delocalization. In limiting cases, a classical Stark analysis can be used, but in intermediate cases the analysis is much more complex because the field affects not only the band position but also the intrinsic bandshape. Such non-classical Stark effects lead to widely different bandshapes. Several examples of both classes are discussed. Because electric fields are applied to immobilized samples, complications arise from inhomogeneous broadening, along with other effects that limit our ability to extract unique parameters in some cases. In the case of the radical cation of the special pair in photosynthetic reaction centres, where the mixed-valence system is in a very complex but structurally well-defined environment, a detailed analysis can be performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.