In this paper we study the Lefschetz properties of monomial complete intersections in positive characteristic. We give a complete classification of the strong Lefschetz property when the number of variables is at least three, which proves a conjecture by Cook II. We also extend earlier results on the weak Lefschetz property by dropping the assumption on the residue field being infinite, and by giving new sufficient criteria.
There is a longstanding conjecture by Fröberg about the Hilbert series of the ring R/I, where R is a polynomial ring, and I an ideal generated by generic forms. We prove this conjecture true in the case when I is generated by a large number of forms, all of the same degree. We also conjecture that an ideal generated by m'th powers of forms of degree d gives the same Hilbert series as an ideal generated by generic forms of degree md. We verify this in several cases. This also gives a proof of the first conjecture in some new cases.
We give a lower bound on the Hilbert series of the exterior algebra modulo a principal ideal generated by a generic form of odd degree and disprove a conjecture by Moreno-Socías and Snellman. We also show that the lower bound is equal to the minimal Hilbert series in some specific cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.