This method enables the visualisation of sleep state in preterm infants which can assist clinical management in the neonatal intensive care unit.
ObjectiveA major challenge in the care of preterm infants is the early identification of compromised neurological development. While several measures are routinely used to track anatomical growth, there is a striking lack of reliable and objective tools for tracking maturation of early brain function; a cornerstone of lifelong neurological health. We present a cot‐side method for measuring the functional maturity of the newborn brain based on routinely available neurological monitoring with electroencephalography (EEG).MethodsWe used a dataset of 177 EEG recordings from 65 preterm infants to train a multivariable prediction of functional brain age (FBA) from EEG. The FBA was validated on an independent set of 99 EEG recordings from 42 preterm infants. The difference between FBA and postmenstrual age (PMA) was evaluated as a predictor for neurodevelopmental outcome.ResultsThe FBA correlated strongly with the PMA of an infant, with a median prediction error of less than 1 week. Moreover, individual babies follow well‐defined individual trajectories. The accuracy of the FBA applied to the validation set was statistically equivalent to the training set accuracy. In a subgroup of infants with repeated EEG recordings, a persistently negative predicted age difference was associated with poor neurodevelopmental outcome.InterpretationThe FBA enables the tracking of functional neurodevelopment in preterm infants. This establishes proof of principle for growth charts for brain function, a new tool to assist clinical management and identify infants who will benefit most from early intervention.
Minimally invasive, automated cot-side tools for monitoring early neurological development can be used to guide individual treatment and benchmark novel interventional studies. We develop an automated estimate of the EEG maturational age (EMA) for application to serial recordings in preterm infants. The EMA estimate was based on a combination of 23 computational features estimated from both the full EEG recording and a period of low EEG activity (46 features in total). The combination function (support vector regression) was trained using 101 serial EEG recordings from 39 preterm infants with a gestational age less than 28 weeks and normal neurodevelopmental outcome at 12 months of age. EEG recordings were performed from 24 to 38 weeks post-menstrual age (PMA). The correlation between the EMA and the clinically determined PMA at the time of EEG recording was 0.936 (95%CI: 0.932–0.976; n = 39). All infants had an increase in EMA between the first and last EEG recording and 57/62 (92%) of repeated measures within an infant had an increasing EMA with PMA of EEG recording. The EMA is a surrogate measure of age that can accurately determine brain maturation in preterm infants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.