A real-time PCR assay for the detection of four Leishmania complexes (L. Viannia, L. mexicana, L. donovani/infantum, and L. major) was developed and evaluated. The assay was developed to detect the glucosephosphate isomerase gene and capitalizes on DNA sequence variability within that gene for Leishmania complex identification. Primer/probe sets were created and tested against a panel of 21 known negative controls and on DNA extracted from cultured promastigotes or from tissue biopsies from patients with cutaneous leishmaniasis. The assay was highly specific, as no amplification products were detected in the negative control samples while simultaneously retaining a high degree of complex-specific diagnostic accuracy for cultured organisms and patient clinical samples. Real-time PCR offers rapid (within hours) identification of Leishmania to the complex level and provides a useful molecular tool to assist both epidemiologists and clinicians.
Leishmaniasis causes significant morbidity and mortality in areas where it is endemic. In areas where it is nonendemic, global travel and increased incidence of the disease in human immunodeficiency virus and intravenous-drug user populations are also causes for concern. The unavailability of rapid and reliable tests for diagnosis of the various leishmaniases makes patient management difficult. We have developed an enzymelinked immunosorbent assay (ELISA) that can detect immunoglobulin M (IgM) and IgG antibodies in patients with visceral and cutaneous leishmaniasis. These practical assays are based on soluble antigens from promastigotes cultivated in a protein-free medium. In preliminary studies, 129 visceral (Brazil, Italy, North Africa, and Nepal) and 143 cutaneous (Brazil) leishmaniasis patients with controls were tested. Overall, the tests showed a sensitivity of 95.1%. In addition, the ELISA correctly identified 42 sera from Brazilian dogs with canine leishmaniasis and 10 healthy controls. Serological tests for the various clinical manifestations of leishmaniasis could be useful epidemiological and patient management tools in populations of areas of endemicity and nonendemicity.
The potential of Leishmania major culture-derived soluble exogenous antigens (SEAgs) to induce a protective response in susceptible BALB/c mice challenged with L. major promastigotes was investigated. Groups of BALB/c mice were immunized with L. major SEAgs alone, L. major SEAgs coadministered with either alum (aluminum hydroxide gel) or recombinant murine interleukin-12 (rmIL-12), L. major SEAgs coadministered with both alum and rmIL-12, and L. major SEAgs coadministered with Montanide ISA 720. Importantly and surprisingly, the greatest and most consistent protection against challenge with L. major was seen in mice immunized with L. major SEAgs alone, in the absence of any adjuvant. Mice immunized with L. major SEAgs had significantly smaller lesions that at times contained more than 100-fold fewer parasites. When lymphoid cells from L. major SEAg-immunized mice were stimulated with leishmanial antigen in vitro, they proliferated and secreted a mixed profile of type 1 and type 2 cytokines. Finally, analyses with Western blot analyses and antibodies against three surface-expressed and secreted molecules of L. major (lipophosphoglycan, gp46/M2/ PSA-2, and gp63) revealed that two of these molecules are present in L. major SEAgs, lipophosphoglycan and the molecules that associate with it and gp46/M2/PSA-2.
Visceral leishmaniasis (VL) seroprevalence in Kenya is unknown because of the lack of a practical and accurate diagnostic test or surveillance system. A novel serological assay was used to estimate the seroprevalence of Leishmania-specific antibodies, and Global Information System and spatial clustering techniques were applied to study the presence of spatial clusters in Parkarin and Loboi villages in Baringo District in 2001. VL seroprevalences were 52.5% in Parkarin and 16.9% in Loboi. Significant associations among seropositivity and house construction, age, and proximity to domestic animal enclosures were found. A significant spatial cluster of VL was found in Loboi. The spatial distribution of cases in the two villages was different with respect to risk factors, such as presence of domestic animals. This study suggests that disease control efforts could be focused on elimination of sand fly habitat, placement of domestic animal enclosures, and targeted use of insecticides.
One of the most significant modern day efforts to prevent and control an arthropod-borne disease during a military deployment occurred when a team of U.S. military entomologists led efforts to characterize, prevent, and control leishmaniasis at Tallil Air Base (TAB), Iraq, during Operation Iraqi Freedom. Soon after arriving at TAB on 22 March 2003, military entomologists determined that 1) high numbers of sand flies were present at TAB, 2) individual soldiers were receiving many sand fly bites in a single night, and 3) Leishmania parasites were present in 1.5% of the female sand flies as determined using a real-time (fluorogenic) Leishmania-generic polymerase chain reaction assay. The rapid determination that leishmaniasis was a specific threat in this area allowed for the establishment of a comprehensive Leishmaniasis Control Program (LCP) over 5 mo before the first case of leishmaniasis was confirmed in a U.S. soldier deployed to Iraq. The LCP had four components: 1) risk assessment, 2) enhancement of use of personal protective measures by all personnel at TAB, 3) vector and reservoir control, and 4) education of military personnel about sand flies and leishmaniasis. The establishment of the LCP at TAB before the onset of any human disease conclusively demonstrated that entomologists can play a critical role during military deployments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.