The cell tropism of human noroviruses and the development of an in vitro infection model remain elusive. Although susceptibility to individual human norovirus strains correlates with an individual’s histo-blood group antigen (HBGA) profile, the biological basis of this restriction is unknown. We demonstrate that human and mouse noroviruses infected B cells in vitro and likely in vivo. Human norovirus infection of B cells required the presence of HBGA-expressing enteric bacteria. Furthermore, mouse norovirus replication was reduced in vivo when the intestinal microbiota was depleted by means of oral antibiotic administration. Thus, we have identified B cells as a cellular target of noroviruses and enteric bacteria as a stimulatory factor for norovirus infection, leading to the development of an in vitro infection model for human noroviruses.
Human cytomegalovirus (HCMV) is a large DNA virus belonging to the subfamily Betaherpesvirinae. Haematopoietic cells of the myeloid lineage have been shown to harbour latent HCMV. However, following terminal differentiation of these cells, virus is reactivated, and in an immunocompromised host acute infection can occur. It is currently unknown which viral and cellular factors are involved in regulating the switch between lytic and latent infections. Cyclophilin A (CyPA) is a cellular protein that acts as a major factor in virus replication and/or virion maturation for a number of different viruses, including human immunodeficiency virus, hepatitis C virus, murine cytomegalovirus, influenza A virus and vaccinia virus. This study investigated the role of CyPA during HCMV infection. CyPA expression was silenced in human foreskin fibroblast (HF) and THP-1 cells using small interfering RNA (siRNA) technology, or the cells were treated with cyclosporin A (CsA) to inhibit CyPA activity. Silencing CyPA in HF cells with siRNA resulted in an overall reduction in virus production characterized by delayed expression of immediate-early (IE) proteins, decreased viral DNA loads and reduced titres. Furthermore, silencing of CyPA in THP-1 cells pre-and postdifferentiation prevented IE protein expression and virus reactivation from a non-productive state. Interestingly, it was observed that treatment of THP-1 cells with CsA prevented the cells from establishing a fully latent infection. In summary, these results demonstrate that CyPA expression is an important factor in HCMV IE protein expression and virus production in lytically infected HF cells, and is a major component in virus reactivation from infected THP-1 cells.
Human cytomegalovirus (HCMV) is a member of the Herpesviridae family that infects individuals throughout the world. Following an initial lytic stage, HCMV can persist in the individual for life in a non-active (or latent) form. During latency, the virus resides within cells of the myeloid lineage. The mechanisms controlling HCMV latency are not completely understood. A latency associated transcript, UL81-82ast, encoding the protein LUNA (Latency Unique Natural Antigen) was identified from latently infected donors in vivo. To address the role of the UL81-82ast protein product LUNA, in the context of the viral genome, we developed a recombinant HCMV bacterial artificial chromosome (BAC) that does not express LUNA. This construct, LUNA knockout FIX virus (FIX-ΔLUNA), was used to evaluate LUNA's role in HCMV latency. The FIX-ΔLUNA virus was able to lytically infect Human Fibroblast (HF) cells, showing that LUNA is not required to establish a lytic infection. Interestingly, we observed significantly higher viral copy numbers in HF cells infected with FIX-ΔLUNA when compared to FIX-WT virus. Furthermore, FIX-WT and FIX-ΔLUNA genomic DNA and transcription of UL81-82ast persisted over time in primary monocytes. In contrast, the levels of UL138 transcript expression in FIX-ΔLUNA infected HF and CD14+ cells was 100 and 1000 fold lower (respectively) when compared to the levels observed for FIX-WT infection. Moreover, FIX-ΔLUNA virus failed to reactivate from infected CD14+ cells following differentiation. This lack of viral reactivation was accompanied by a lack of lytic gene expression, increase in viral copy numbers, and lack of the production of infectious units following differentiation of the cells. Our study suggests that the LUNA protein is involved in regulating HCMV reactivation, and that in the absence of LUNA, HCMV may not be able to enter a proper latent state and therefore cannot be rescued from the established persistent infection in CD14+ cells.
Gammaherpesviruses such as Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV, HHV-8) establish lifelong latency in their hosts and are associated with the development of several types of malignancies, including a subset of B cell lymphomas. These viruses are thought to co-opt the process of B cell differentiation to latently infect a fraction of circulating memory B cells, resulting in the establishment of a stable latency setpoint. However, little is known about how this infected memory B cell compartment is maintained throughout the life of the host. We have previously demonstrated that immature and transitional B cells are long-term latency reservoirs for murine gammaherpesvirus 68 (MHV68), suggesting that infection of developing B cells contributes to the maintenance of lifelong latency. During hematopoiesis, immature and transitional B cells are subject to B cell receptor (BCR)-mediated negative selection, which results in the clonal deletion of autoreactive B cells. Interestingly, numerous gammaherpesviruses encode homologs of the anti-apoptotic protein Bcl-2, suggesting that virus inhibition of apoptosis could subvert clonal deletion. To test this, we quantified latency establishment in mice inoculated with MHV68 vBcl-2 mutants. vBcl-2 mutant viruses displayed a marked decrease in the frequency of immature and transitional B cells harboring viral genome, but this attenuation could be rescued by increased host Bcl-2 expression. Conversely, vBcl-2 mutant virus latency in early B cells and mature B cells, which are not targets of negative selection, was remarkably similar to wild-type virus. Finally, in vivo depletion of developing B cells during chronic infection resulted in decreased mature B cell latency, demonstrating a key role for developing B cells in the maintenance of lifelong latency. Collectively, these findings support a model in which gammaherpesvirus latency in circulating mature B cells is sustained in part through the recurrent infection and vBcl-2-mediated survival of developing B cells.
Human cytomegalovirus (HCMV) infection is an important cause of morbidity and mortality among both solid organ and hematopoietic stem cell transplant recipients. Identification of cells throughout the body that can potentially serve as a viral reservoir is essential to dissect mechanisms of cell tropism and latency and to develop novel therapies. Here, we tested and compared the permissivity of liver-, brain-, lung (LNG)- and bone marrow (BM)-derived perivascular mesenchymal stromal cells (MSC) to HCMV infection and their ability to propagate and produce infectious virus. Perivascular MSC isolated from the different organs have in common the expression of CD146 and Stro-1. While all these cells were permissive to HCMV infection, the highest rate of HCMV infection was seen with LNG-MSC, as determined by viral copy number and production of viral particles by these cells. In addition, we showed that, although the supernatants from each of the HCMV-infected cultures contained infectious virus, the viral copy number and the quantity and timing of virus production varied among the various organ-specific MSC. Furthermore, using quantitative polymerase chain reaction, we were able to detect HCMV DNA in BM-MSC isolated from 7 out of 19 healthy, HCMV-seropositive adults, suggesting that BM-derived perivascular stromal cells may constitute an unrecognized natural HCMV reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.