Transition metal oxides are promising materials for the development of cost-effective catalysts for the oxygen evolution reaction (OER) in alkaline media. Understanding the catalysts' transformations occurring during the harsh oxidative conditions of the OER remains a bottleneck for the development of stable and active catalysts. Here, we studied redox transformations of core− shell Fe 3 O 4 @CoFe 2 O 4 oxide nanoparticles over a wide range of potentials by using operando near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in total electron yield (TEY) detection mode. The analysis of the NEXAFS spectra reveals that the Fe 3 O 4 core strongly affects the surface chemistry of the CoFe 2 O 4 shell under the OER conditions. The spinel structure of the particles with Co (II) in the shell is preserved at potentials as high as 1.8 V vs RHE, at which Co (II) is expected to be oxidized into Co (III); whereas Fe (II) in the core is reversibly oxidized to Fe (III).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.