Large carnivores can be particularly sensitive to the effects of habitat fragmentation on genetic diversity [1, 2]. The Santa Monica Mountains (SMMs), a large natural area within Greater Los Angeles, is completely isolated by urban development and the 101 freeway to the north. Yet the SMMs support a population of mountain lions (Puma concolor), a very rare example of a large carnivore persisting within the boundaries of a megacity. GPS locations of radio-collared lions indicate that freeways are a near-absolute barrier to movement. We genotyped 42 lions using 54 microsatellite loci and found that genetic diversity in SMM lions, prior to 2009, was lower than that for any population in North America except in southern Florida, where inbreeding depression led to reproductive failure [3-5]. We document multiple instances of father-daughter inbreeding and high levels of intraspecific strife, including the unexpected behavior of a male killing two of his offspring and a mate and his son killing two of his brothers. Overall, no individuals from the SMMs have successfully dispersed. Gene flow is critical for this population, and we show that a single male immigrated in 2009, successfully mated, and substantially enhanced genetic diversity. Our results imply that individual behaviors, most likely caused by limited area and reduced opportunities to disperse, may dominate the fate of small, isolated populations of large carnivores. Consequently, comprehensive behavioral monitoring can suggest novel solutions for the persistence of small populations, such as the transfer of individuals across dispersal barriers.
Avian poxvirus (genus Avipoxvirus, family Poxviridae) is an enveloped double-stranded DNA virus that may be transmitted to birds by arthropod vectors or mucosal membrane contact with infectious particles. We characterized the infection in Anna's Hummingbird (Calypte anna; n = 5 birds, n = 9 lesions) by conducting diagnostic tests on skin lesions that were visually similar to avian poxvirus lesions in other bird species. Skin lesions were single or multiple, dry and firm, pink to yellow, with scabs on the surface, and located at the base of the bill, wings, or legs. Microscopically, the lesions were characterized by epidermal hyperplasia and necrosis with ballooning degeneration, and intracytoplasmic inclusions (Bollinger bodies) in keratinocytes. The 4b core gene sequence of avian poxvirus was detected by PCR in samples prepared from lesions. Nucleotide sequences were 75-94% similar to the sequences of other published avian poxvirus sequences. Phylogenetic analyses showed that the Anna's Hummingbird poxvirus sequence was distinguished as a unique subclade showing similarities with sequences isolated from Ostrich (Struthio camelus), Wild Turkey (Meleagris gallopavo), falcons (Falco spp.), Black-browed Albatross (Diomedea melanophris), Mourning Dove (Zenaida macroura) and White-tailed Eagle (Haliaeetus albicilla). To our knowledge this is the first published report of definitive laboratory diagnosis of avian poxvirus in a hummingbird. Our results advance the science of disease ecology in hummingbirds, providing management information for banders, wildlife rehabilitators, and avian biologists.
The domestic ferret (Mustela putorius furo) is an important model organism for the study of avian influenza and other diseases of humans and animals, as well as a popular pet animal. In order to evaluate genetic diversity and study disease relationships in ferrets, 22 nuclear microsatellite loci (17 dinucleotide and 5 tetranucleotide) were developed from ferret genomic libraries and organized into seven multiplex sets. Polymorphism was preliminarily assessed in one population in Australia and one in the USA, sampled with 25 individuals each. The loci displayed allelic diversity ranging from 1 to 5 alleles, and expected and observed heterozygosities ranging from 0.04 to 0.65 and 0.04 to 0.76, respectively. Additionally, the loci amplified products in 15 samples from the wild ancestor, European polecat (Mustela putorius) and domestic ferret-polecat hybrids. In polecat/hybrid samples, allelic diversity ranged from 3 to 8 alleles, and expected and observed heterozygosities ranged from 0.13 to 0.81 and 0.13 to 0.80 respectively. These markers will be useful for molecular assessments of genetic diversity and applications to evolution, ecology, and health in domestic ferrets and wild polecats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.