Analogues of the argininamide-type NPY Y1 receptor (Y1R) antagonist BIBP3226, bearing carbamoyl moieties at the guanidine group, revealed subnanomolar Ki values and caused depression of the maximal response to NPY (calcium assay) by up to 90% in a concentration- and time-dependent manner, suggesting insurmountable antagonism. To gain insight into the mechanism of binding of the synthesized compounds, a tritiated antagonist, (R)-N(α)-diphenylacetyl-N(ω)-[2-([2,3-(3)H]propionylamino)ethyl]aminocarbonyl-(4-hydroxybenzyl)arginin-amide ([(3)H]UR-MK299, [(3)H]38), was prepared. [(3)H]38 revealed a dissociation constant in the picomolar range (Kd 0.044 nM, SK-N-MC cells) and very high Y1R selectivity. Apart from superior affinity, a considerably lower target off-rate (t1/2 95 min) was characteristic of [(3)H]38 compared to that of the higher homologue containing a tetramethylene instead of an ethylene spacer (t1/2 3 min, Kd 2.0 nM). Y1R binding of [(3)H]38 was fully reversible and fully displaceable by nonpeptide antagonists and the agonist pNPY. Therefore, the insurmountable antagonism observed in the functional assay has to be attributed to the extended target-residence time, a phenomenon of relevance in drug research beyond the NPY receptor field.
Stroke induces a multiphasic systemic immune response, but the consequences of this response on atherosclerosis-a major source of recurrent vascular events-have not been thoroughly investigated. We show that stroke exacerbates atheroprogression via alarmin-mediated propagation of vascular inflammation. The prototypic brain-released alarmin high-mobility group box 1 protein induced monocyte and endothelial activation via the receptor for advanced glycation end products (RAGE)-signaling cascade and increased plaque load and vulnerability. Recruitment of activated monocytes via the CC-chemokine ligand 2-CC-chemokine receptor type 2 pathway was critical in stroke-induced vascular inflammation. Neutralization of circulating alarmins or knockdown of RAGE attenuated atheroprogression. Blockage of β3-adrenoreceptors attenuated the egress of myeloid monocytes after stroke, whereas neutralization of circulating alarmins was required to reduce systemic monocyte activation and aortic invasion. Our findings identify a synergistic effect of the sympathetic stress response and alarmin-driven inflammation via RAGE as a critical mechanism of exacerbated atheroprogression after stroke.
Fluorescence-labeled receptor ligands have emerged as valuable molecular tools, being indispensable for studying receptor−ligand interactions by fluorescence-based techniques such as high-content imaging, fluorescence microscopy, and fluorescence polarization. Through application of a new labeling strategy for peptides, a series of fluorescent neurotensin(8−13) derivatives was synthesized by attaching red-emitting fluorophores (indolinium-and pyridinium-type cyanine dyes) to carbamoylated arginine residues in neurotensin(8−13) analogues, yielding fluorescent probes with high NTS 1 R affinity (pK i values: 8.15−9.12) and potency (pEC 50 values (Ca 2+ mobilization): 8.23−9.43). Selected fluorescent ligands were investigated by flow cytometry and high-content imaging (saturation binding, kinetic studies, and competition binding) as well as by confocal microscopy using intact CHO-hNTS 1 R cells. The study demonstrates the applicability of the fluorescent probes as molecular tools to obtain, for example, information about the localization of receptors in cells and to determine binding affinities of nonlabeled ligands.
Traumatic brain injury frequently affects the cerebral cortex, yet little is known about the differential effects that occur if only the gray matter (GM) is damaged or if the injury also involves the white matter (WM). To tackle this important question and directly compare similarities and differences in reactive gliosis, we performed stab wound injury affecting GM and WM (GM+) and one restricted to the GM (GM-) in the adult murine cerebral cortex. First, we examined glial reactivity in the regions affected (WM and GM) and determined the influence of WM injury on reactive gliosis in the GM comparing the same area in the two injury paradigms. In the GM+ injury microglia proliferation is increased in the WM compared with GM, while proliferating astrocytes are more abundant in the GM than in the WM. Interestingly, WM lesion exerted a strong influence on the proliferation of the GM glial cells that was most pronounced at early stages, 3 days post lesion. While astrocyte proliferation was increased, NG2 glia proliferation was decreased in the GM+ compared with GM- lesion condition. Importantly, these differences were not observed when a lesion of the same size affected only the GM. Unbiased proteomic analyses further corroborate our findings in support of a profound difference in GM reactivity when WM is also injured and revealed MIF as a key regulator of NG2 glia proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.