Deciphering depositional age from deposits that accumulate in deep-water slope settings can enhance understanding of shelf-margin evolutionary timing, as well as controlling mechanisms in ancient systems worldwide. Basin analysis has long employed biostratigraphy and/or tephrochronology to temporally constrain ancient environments. However, due to poor preservation of index fossils and volcanic ash beds in many deepwater systems, deducing the timing of slope evolution has proven challenging. Here, we present >6600 new U-Pb zircon ages with stratigraphic information from an ~100-kmlong by ~2.5-km-thick outcrop belt to elucidate evolutionary timing for a Campanian-Maastrichtian slope succession in the Magallanes Basin, Chile. Results show that the succession consists of four stratigraphic intervals, which characterize four evolutionary phases of the slope system. Overall, the succession records 9.9 ± 1.4 m.y. (80.5 ± 0.3 Ma to 70.6 ± 1.5 Ma) of graded clinoform development punctuated by out-of-grade periods distinguished by enhanced coarse-grained sediment bypass downslope. Synthesis of our results with geochronologic, structural, and stratigraphic data from the basin suggests that slope evolution was largely controlled by an overall decline in basin subsidence from 82 to 74 Ma. In addition to providing insight into slope evolution, our results show that the reliability of zircon-derived depositional duration estimates for ancient sedimentary systems is controlled by: (1) the proportion of syndepositionally formed zircon in a strati
New detrital zircon geochronologic data from the Straight Cliffs Formation of southern Utah provide insight into the controls on stratigraphic architecture of the Western Interior Basin during Turonian-early Campanian time. Detrital zircon ages (N = 40, n = 3650) derived from linked fl uvial and shallow-marine depositional systems of the Kaiparowits Plateau indicate the majority of zircons in fl uvial strata were derived from the Mogollon Highlands (1.25-1.90 Ga, 67% of fl uvial zircons), with subordinate contributions delivered from the Sevier fold-andthrust belt (265-1250 Ma, 17%) and Cordilleran magmatic sources (81-265 Ma, 16%). Integration of these data with fl uvial facies distributions, petrography, clast counts, and evidence of magmatic arc sources from the Mohave region of California implies the presence of a northeast-fl owing, axial fl uvial system. This system was fed by rivers draining the Mogollon Highlands to the south and by transverse drainages from the Sevier fold-and-thrust belt to the west. Compared to the fl uvial deposits, shallow-marine sandstones have a greater proportion of Sevier fold-and-thrust belt-derived zircons (42%), which were delivered via longshore currents from the north. Shallow-marine samples also contain less Mogollon input (44%) compared to contemporaneous fl uvial systems, and similar input from the magmatic arc (14%). Although Proterozoic zircons associated with the Mogollon Highlands are also present in the Sevier fold-and-thrust belt, several lines of evidence argue for a distinct southerly source for the Straight Cliffs Formation. These include (1) moderate proportions of feldspar and angular quartz grains in fl uvial sandstones, which favor a felsic intrusive source, and (2) prominent 1.4 and 1.7 Ga zircon populations. The 1.4 and 1.7 Ga peaks are the only dominant Proterozoic peaks in samples from the Straight Cliffs Formation, whereas samples derived more directly from the Sevier fold-and-thrust belt tend to have a broader distribution of Proterozoic age peaks. Up-section architectural trends in the Straight Cliffs Formation are linked to trends in detrital zircon geochronologic data, underscoring the likelihood of common drivers and controls. The axial system depositing Straight Cliffs fl uvial strata was primarily fed by drainages originating in the Mogollon Highlands during a pulse of tectonic activity in the Maria fold-and-thrust belt and generally high subsidence rates in the foreland basin (Turonian-Santonian). Over time, activation of the Paxton duplex in the Sevier fold-and-thrust belt (early Campanian) exhumed proximal foreland basin strata and enabled drainage systems from the Sevier fold-and-thrust belt to feed into the basin more prominently. The results presented here underscore the potential signifi cance of axial fl uvial systems and their complex interplay with transverse drainage networks in foreland basins.
Deposits of submarine debris flows can build up substantial topography on the sea floor. The resulting sea floor morphology can strongly influence the pathways of and deposition from subsequent turbidity currents. Map views of sea floor morphology are available for parts of the modern sea floor and from high‐resolution seismic‐reflection data. However, these data sets usually lack lithological information. In contrast, outcrops provide cross‐sectional and lateral stratigraphic details of deep‐water strata with superb lithological control but provide little information on sea floor morphology. Here, a methodology is presented that extracts fundamental lithological information from sediment core and well logs with a novel calibration between core, well‐logs and seismic attributes within a large submarine axial channel belt in the Tertiary Molasse foreland basin, Austria. This channel belt was the course of multiple debris‐flow and turbidity current events, and the fill consists of interbedded layers deposited by both of these processes. Using the core‐well‐seismic calibration, three‐dimensional lithofacies proportion volumes were created. These volumes enable the interpretation of the three‐dimensional distribution of the important lithofacies and thus the investigation of sea floor morphology produced by debris‐flow events and its impact on succeeding turbidite deposition. These results show that the distribution of debris‐flow deposits follows a relatively regular pattern of levées and lobes. When subsequent high‐density turbidity currents encountered this mounded debris‐flow topography, they slowed and deposited a portion of their sandy high‐density loads just upstream of morphological highs. Understanding the depositional patterns of debris flows is key to understanding and predicting the location and character of associated sandstone accumulations. This detailed model of the filling style and the resulting stratigraphic architecture of a debris‐flow dominated deep‐marine depositional system can be used as an analogue for similar modern and ancient systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.