Recently we discovered that the central metabolite α-ketoglutarate (α-KG) extends lifespan in C. elegans through inhibition of ATP synthase and TOR signaling. Unexpectedly, here we find that (R)-2-hydroxyglutarate ((R)-2HG), an oncometabolite that interferes with various α-KG mediated processes, extends worm lifespan similarly. (R)-2HG accumulates in human cancers carrying neomorphic mutations in the isocitrate dehydrogenase (IDH) 1 and 2 genes. We show that, like α-KG, both (R)-2HG and (S)-2HG bind and inhibit ATP synthase, and inhibit mTOR signaling; these effects are mirrored in IDH1 mutant cells, suggesting a growth suppressive function of (R)-2HG. Consistently, inhibition of ATP synthase by 2-HG or α-KG in glioblastoma cells is sufficient for growth arrest and tumor cell killing under conditions of glucose limitation, such as when ketone bodies (instead of glucose) are supplied for energy. These findings inform therapeutic strategies and open avenues for investigating the roles of 2-HG and metabolites in biology and disease.
Glioblastoma (GBM) tumors exhibit potentially actionable genetic alterations against which targeted therapies have been effective in treatment of other cancers. However, these therapies have largely failed in GBM patients. A notable example is kinase inhibitors of EGFR, which display poor clinical efficacy despite overexpression and/or mutation of EGFR in >50% of GBM. In addressing this issue, preclinical models may be limited by the inability to accurately replicate pathophysiologic interactions of GBM cells with unique aspects of the brain extracellular matrix (ECM), which is relatively enriched in hyaluronic acid (HA) and flexible. In this study, we present a brain-mimetic biomaterial ECM platform for 3D culturing of patient-derived GBM cells, with improved pathophysiologic properties as an experimental model. Compared with orthotopic xenograft assays, the novel biomaterial cultures we developed better preserved the physiology and kinetics of acquired resistance to the EGFR inhibition than gliomasphere cultures. Orthogonal modulation of both HA content and mechanical properties of biomaterial scaffolds was required to achieve this result. Overall, our findings show how specific interactions between GBM cell receptors and scaffold components contribute significantly to resistance to the cytotoxic effects of EGFR inhibition. Three-dimensional culture scaffolds of glioblastoma provide a better physiological representation over current methods of patient-derived cell culture and xenograft models. .
Cross-talk among oncogenic signaling and metabolic pathways may create opportunities for novel therapeutic strategies in cancer. Here we show that acute inhibition of EGFR-driven glucose metabolism induces minimal cell death, yet lowers the apoptotic threshold in a subset of patient-derived glioblastoma (GBM) cells. Mechanistic studies revealed that, following attenuated glucose consumption, Bcl-xL blocks cytoplasmic p53 from triggering intrinsic apoptosis. Consequently, pharmacological stabilization of p53 with the brain-penetrant small molecule, Idasanutlin, in combination with targeting EGFR-driven glucose metabolism promoted synthetic lethality in orthotopic xenograft models. Notably, neither inhibition of EGFR signaling, nor genetic analysis of EGFR, was sufficient to predict sensitivity to this new therapeutic combination. Conversely, rapid changes in 18F-fluorodeoxyglucose (18F-FDG) uptake using non-invasive positron emission tomography was an effective predictive biomarker of response in vivo. Together, these studies identify a critical link between oncogene signaling, glucose metabolism, and cytoplasmic p53, which could be exploited for combination therapy in GBM and potentially, other malignancies.
Co-targeting of both de novo and salvage pathways for dCTP biosynthesis shows efficacy in T-ALL and B-ALL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.