Leukemia is the most frequent malignancy in children and adolescents, with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) as the most common subtypes. Minimal residual disease (MRD) measured by flow cytometry (FCM) has proven to be a strong prognostic factor in ALL as well as in AML. Machine learning techniques have been emerging in the field of automated MRD quantification with the objective of superseding subjective and time-consuming manual analysis of FCM-MRD data. In contrast to ALL, where supervised multi-class classification methods have been successfully deployed for MRD detection, AML poses new challenges: AML is rarer (with fewer available training data) than ALL and much more heterogeneous in its immunophenotypic appearance, where one-class classification (anomaly detection) methods seem more suitable. In this work, a new semi-supervised approach based on the UMAP algorithm for MRD detection utilizing only labels of blast free FCM samples is presented. The method is tested on a newly gathered set of AML FCM samples and results are compared to state-of-the-art methods. We reach a median F1-score of 0.794, while providing a transparent classification pipeline with explainable results that facilitates inter-disciplinary work between medical and technical experts. This work shows that despite several issues yet to overcome, the merits of automated MRD quantification can be fully exploited also in AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.