BackgroundThe 2014–2016 Ebola virus (EBOV) outbreak in West Africa highlighted the need for improved therapeutic options against this virus. Approaches targeting host factors/pathways essential for the virus are advantageous because they can potentially target a wide range of viruses, including newly emerging ones and because the development of resistance is less likely than when targeting the virus directly. However, systematic approaches for screening host factors important for EBOV have been hampered by the necessity to work with this virus at biosafety level 4 (BSL4).MethodsIn order to identify host factors involved in the EBOV life cycle, we performed a genome-wide siRNA screen comprising 64,755 individual siRNAs against 21,566 human genes to assess their activity in EBOV genome replication and transcription. As a screening platform, we used reverse genetics-based life cycle modelling systems that recapitulate these processes without the need for a BSL4 laboratory.ResultsAmong others, we identified the de novo pyrimidine synthesis pathway as an essential host pathway for EBOV genome replication and transcription, and confirmed this using infectious EBOV under BSL4 conditions. An FDA-approved drug targeting this pathway showed antiviral activity against infectious EBOV, as well as other non-segmented negative-sense RNA viruses.ConclusionsThis study provides a minable data set for every human gene regarding its role in EBOV genome replication and transcription, shows that an FDA-approved drug targeting one of the identified pathways is highly efficacious in vitro, and demonstrates the power of life cycle modelling systems for conducting genome-wide host factor screens for BSL4 viruses.Electronic supplementary materialThe online version of this article (10.1186/s13073-018-0570-1) contains supplementary material, which is available to authorized users.
Background Abdominal pain and other gastrointestinal symptoms are common presenting features of multisystem inflammatory syndrome in children (MIS-C) and can overlap with infectious or inflammatory abdominal conditions, making accurate diagnosis challenging. Case Presentation We describe the case of a 16-year-old female who presented with clinical symptoms suggestive of appendicitis and an abdominal computed tomography (CT) that revealed features concerning for appendicitis. After laparoscopic appendectomy, histopathology of the appendix demonstrated only mild serosal inflammation and was not consistent with acute appendicitis. Her overall clinical presentation was felt to be consistent with MIS-C and she subsequently improved with immunomodulatory and steroid treatment. Conclusions We note that MIS-C can mimic acute appendicitis. This case highlights MIS-C as a cause of abdominal imaging with features concerning for appendicitis, and MIS-C should be considered in the differential for a patient with appendicitis-like symptoms and a positive COVID-19 IgG. Lab criteria, specifically low-normal white blood cell count and thrombocytopenia, appears to be of high relevance in differing MIS-C from acute appendicitis, even when appendix radiologically is dilated.
Ebola virus (EBOV) causes severe outbreaks of viral hemorrhagic fever in humans. While virus-host interactions are promising targets for antivirals, there is only limited knowledge regarding the interactions of EBOV with cellular host factors. Recently, we performed a genome-wide siRNA screen that identified the nuclear RNA export factor 1 (NXF1) as an important host factor for the EBOV life cycle. NXF1 is a major component of the nuclear mRNA export pathway that is usurped by many viruses whose life cycles include nuclear stages. However, the role of NXF1 in the life cycle of EBOV, a virus replicating in cytoplasmic inclusion bodies, remains unknown. In order to better understand the role of NXF1 in the EBOV life cycle, we performed a combination of co-immunoprecipitation and double immunofluorescence assays to characterize the interactions of NXF1 with viral proteins and RNAs. Additionally, using siRNA-mediated knockdown of NXF1 together with functional assays, we analyzed the role of NXF1 in individual aspects of the virus life cycle. With this approach we identified the EBOV nucleoprotein (NP) as a viral interaction partner of NXF1. Further studies revealed that NP interacts with the RNA-binding domain of NXF1 and competes with RNA for this interaction. Co-localization studies showed that RNA binding-deficient, but not wildtype NXF1, accumulates in NP-derived inclusion bodies, and knockdown experiments demonstrated that NXF1 is necessary for viral protein expression, but not for viral RNA synthesis. Finally, our results showed that NXF1 interacts with viral mRNAs, but not with viral genomic RNAs. Based on these results we suggest a model whereby NXF1 is recruited into inclusion bodies to promote the export of viral mRNA:NXF1 complexes from these sites. This would represent a novel function for NXF1 in the life cycle of cytoplasmically replicating viruses, and may provide a basis for new therapeutic approaches against EBOV, and possibly other emerging viruses.
Ebola virus (EBOV) is a zoonotic pathogen causing severe hemorrhagic fevers in humans and non-human primates with high case fatality rates. In recent years, the number and extent of outbreaks has increased, highlighting the importance of better understanding the molecular aspects of EBOV infection and host cell interactions to control this virus more efficiently. Many viruses, including EBOV, have been shown to recruit host proteins for different viral processes. Based on a genome-wide siRNA screen, we recently identified the cellular host factor carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) as being involved in EBOV RNA synthesis. However, mechanistic details of how this host factor plays a role in the EBOV life cycle remain elusive. In this study, we analyzed the functional and molecular interactions between EBOV and CAD. To this end, we used siRNA knockdowns in combination with various reverse genetics-based life cycle modelling systems and additionally performed co-immunoprecipitation and co-immunofluorescence assays to investigate the influence of CAD on individual aspects of the EBOV life cycle and to characterize the interactions of CAD with viral proteins. Following this approach, we could demonstrate that CAD directly interacts with the EBOV nucleoprotein NP, and that NP is sufficient to recruit CAD into inclusion bodies dependent on the glutaminase (GLN) domain of CAD. Further, siRNA knockdown experiments indicated that CAD is important for both viral genome replication and transcription, while substrate rescue experiments showed that the function of CAD in pyrimidine synthesis is indeed required for those processes. Together, this suggests that NP recruits CAD into inclusion bodies via its GLN domain in order to provide pyrimidines for EBOV genome replication and transcription. These results define a novel mechanism by which EBOV hijacks host cell pathways in order to facilitate genome replication and transcription and provide a further basis for the development of host-directed broad-spectrum antivirals.
Herpesviruses are large DNA viruses, which encode up to 300 different proteins including enzymes enabling efficient replication. Nevertheless, they depend on a multitude of host cell proteins for successful propagation. To uncover cellular host factors important for replication of pseudorabies virus (PrV), an alphaherpesvirus of swine, we performed an unbiased genome-wide CRISPR/Cas9 forward screen. To this end, a porcine CRISPR-knockout sgRNA library (SsCRISPRko.v1) targeting 20,598 genes was generated and used to transduce porcine kidney cells. Cells were then infected with either wildtype PrV (PrV-Ka) or a PrV mutant (PrV-gD–Pass) lacking the receptor-binding protein gD, which regained infectivity after serial passaging in cell culture. While no cells survived infection with PrV-Ka, resistant cell colonies were observed after infection with PrV-gD–Pass. In these cells, sphingomyelin synthase 1 (SMS1) was identified as the top hit candidate. Infection efficiency was reduced by up to 90% for PrV-gD–Pass in rabbit RK13-sgms1KO cells compared to wildtype cells accompanied by lower viral progeny titers. Exogenous expression of SMS1 partly reverted the entry defect of PrV-gD–Pass. In contrast, infectivity of PrV-Ka was reduced by 50% on the knockout cells, which could not be restored by exogenous expression of SMS1. These data suggest that SMS1 plays a pivotal role for PrV infection, when the gD-mediated entry pathway is blocked.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.