Summary
The roles of tumor-associated macrophages (TAMs) and circulating monocytes in human cancer are poorly understood. Here, we show that monocyte subpopulation distribution and transcriptomes are significantly altered by the presence of endometrial and breast cancer. Furthermore, TAMs from endometrial and breast cancers are transcriptionally distinct from monocytes and their respective tissue-resident macrophages. We identified a breast TAM signature that is highly enriched in aggressive breast cancer subtypes and associated with shorter disease-specific survival. We also identified an auto-regulatory loop between TAMs and cancer cells driven by tumor necrosis factor alpha involving SIGLEC1 and CCL8, which is self-reinforcing through the production of CSF1. Together these data provide direct evidence that monocyte and macrophage transcriptional landscapes are perturbed by cancer, reflecting patient outcomes.
Breast cancer research is hampered by difficulties in obtaining and studying primary human breast tissue, and by the lack of in vivo preclinical models that reflect patient tumor biology accurately. To overcome these limitations, we propagated a cohort of human breast tumors grown in the epithelium-free mammary fat pad of SCID/Beige and NOD/SCID/IL2γ-receptor null (NSG) mice, under a series of transplant conditions. Both models yielded stably transplantable xenografts at comparably high rates (~21% and ~19%, respectively). Of the conditions tested, xenograft take rate was highest in the presence of a low-dose estradiol pellet. Overall, 32 stably transplantable xenograft lines were established, representing 25 unique patients. Most tumors yielding xenografts were “triple-negative” (ER-PR-HER2+) (n=19). However, we established lines from three ER-PR-HER2+ tumors, one ER+PR-HER2−, one ER+PR+HER2− and one “triple-positive” (ER+PR+HER2+) tumor. Serially passaged xenografts show biological consistency with the tumor of origin, are phenotypically stable across multiple transplant generations at the histologic, transcriptomic, proteomic, and genomic levels, and show comparable treatment responses as those observed clinically. Xenografts representing 12 patients, including two ER+ lines, showed metastasis to the mouse lung. These models thus serve as a renewable, quality-controlled tissue resource for preclinical studies investigating treatment response and metastasis.
Breast cancer evolution and tumor progression are governed by the complex interactions between steroid receptor [estrogen receptor (ER) and progesterone receptor] and growth factor receptor signaling. In recent years, the field of cancer therapy has witnessed the emergence of multiple strategies targeting these specific cancer pathways and key molecules (ER and growth factor receptors) to arrest tumor growth and achieve tumor eradication; treatment success, however, has varied and both de novo (up front) and acquired resistance have proven a challenge. Recent studies of ER biology have revealed new insights into ER action in breast cancer and have highlighted the role of an intimate crosstalk between the ER and HER family signaling pathways as a fundamental contributor to the development of resistance to endocrine therapies against the ER pathway. The aim of this review article is to summarize the current knowledge on mechanisms of resistance of breast cancer cells to endocrine therapies due to the crosstalk between the ER and the HER growth factor receptor signaling pathways and to explore new available therapeutic strategies that could prolong duration of response and circumvent endocrine resistant tumor growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.