The effects of acrylamide (ACR), nocodazole, and latrunculin were studied on intracellular transport and cytoskeletal morphology in cultured Xenopus laevis melanophores, cells that are specialized for regulated and bidirectional melanosome transport. We used three different methods; light microscopy, fluorescence microscopy, and spectrophotometry. ACR affected the morphology of both microtubules and actin filaments in addition to inhibiting retrograde transport of melanosomes but leaving dispersion unaffected. Using the microtubule-inhibitor nocodazole and the actin filament-inhibitor latrunculin we found that microtubules and actin filaments are highly dependent on each other, and removing either component dramatically changed the organization of the other. Both ACR and latrunculin induced bundling of microtubules, while nocodazole promoted formation of filaments resembling stress fibers organized from the cell center to the periphery. Removal of actin filaments inhibited dispersion of melanosomes, further concentrated the central pigment mass in aggregated cells, and induced aggregation even in the absence of melatonin. Nocodazole, on the other hand, prevented aggregation and caused melanosomes to cluster and slowly disperse. Dispersion of nocodazole-treated cells was induced upon addition of alpha-melanocyte-stimulating hormone (MSH), showing that dispersion can proceed in the absence of microtubules, but the distribution pattern was altered. It is well established that ACR has neurotoxic effects, and based on the results in the present study we suggest that ACR has several cellular targets of which the minus-end microtubule motor dynein and the melatonin receptor might be involved. When combining morphological observations with qualitative and quantitative measurements of intracellular transport, melanophores provide a valuable model system for toxicological studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.