We study online secretary problems with returns in combinatorial packing domains with n candidates that arrive sequentially over time in random order. The goal is to determine a feasible packing of candidates of maximum total value. In the first variant, each candidate arrives exactly twice. All 2n arrivals occur in random order. We propose a simple 0.5‐competitive algorithm. For the online bipartite matching problem, we obtain an algorithm with ratio at least 0.5721 − o(1), and an algorithm with ratio at least 0.5459 for all n ≥ 1. We extend all algorithms and ratios to k ≥ 2 arrivals per candidate. In the second variant, there is a pool of undecided candidates. In each round, a random candidate from the pool arrives. Upon arrival a candidate can be either decided (accept/reject) or postponed. We focus on minimizing the expected number of postponements when computing an optimal solution. An expected number of Θ(n log n) is always sufficient. For bipartite matching, we can show a tight bound of O(r log n), where r is the size of the optimum matching. For matroids, we can improve this further to a tight bound of O(r′ log(n/r′)), where r′ is the minimum rank of the matroid and the dual matroid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.