Abstract. The way rocks deform under changing stress conditions can be described by different deformation modes, which is fundamental for understanding their rheology. For Opalinus Clay, which is regarded as a potential host rock for nuclear waste, we investigate the failure mode as a function of applied effective stress in laboratory experiments. Therefore, we performed consolidated undrained triaxial tests at different effective consolidation stresses from 2.5 to 16 MPa, in which samples were loaded parallel to bedding, and analysed the deformation structures using ion-beam polishing and electron microscopy. With increasing effective confining stress, the results show a transition from brittle-dominated to more ductile-dominated deformations, localising in distinct shear bands. Both effective stress paths and microstructural analysis indicate a tendency towards less dilation in the shear zones for higher effective stresses. Triaxial test results suggest a non-linear failure envelope. The non-linearity of the failure envelope is associated with decreasing dilation with increasing effective stress accompanied by changes in microstructural deformation processes, which explain the decreasing friction angle. For the first time, we can verify that the observed non-linear failure envelope is due to the gradual transition from brittle- to more ductile-dominated deformation on the microscale controlling the bulk hydro-mechanical behaviour of Opalinus Clay.
Summary A comprehensive characterization of clay shale behaviour requires quantifying both geomechanical and hydromechanical characteristics. This paper presents a comparative laboratory study of different methods to determine the water permeability of saturated Opalinus Clay: i) pore pressure oscillation, ii) pressure pulse decay, and iii) pore pressure equilibration. Based on a comprehensive dataset obtained on one sample under well-defined temperature and isostatic effective stress conditions, we discuss the sensitivity of permeability and storativity on the experimental boundary conditions (oscillation frequency, pore pressure amplitudes, effective stress). The results show that permeability coefficients obtained by all three methods differ less than 15 per cent at a constant effective stress of 24 MPa (kmean = 6.6E-21 to 7.5E-21 m2). The pore pressure transmission technique tends towards lower permeability coefficients, whereas the pulse decay and pressure oscillation techniques result in slightly higher values. The discrepancies are considered minor and experimental times of the techniques are similar in the range of 1–2 days for this sample. We found that permeability coefficients determined by the pore pressure oscillation technique increase with higher frequencies, i.e. oscillation periods shorter than 2 hours. No dependence is found for the applied pressure amplitudes (5 per cent, 10 per cent, and 25 per cent of the mean pore pressure). By means of experimental handling and data density, the pore pressure oscillation technique appears to be the most efficient. Data can be recorded continuously over a user-defined period of time and yield information on both, permeability and storativity. Furthermore, effective stress conditions can be held constant during the test and pressure equilibration prior to testing is not necessary. Electron microscopic imaging of ion-beam polished surfaces before and after testing suggests that testing at effective stresses higher than in-situ did not lead to pore significant collapse or other irreversible damage in the samples. The study also shows that unloading during the experiment did not result in a permeability increase, which is associated to the persistent closure of micro-cracks at effective stresses between 24 and 6 MPa.
Abstract. A microphysics-based understanding of mechanical and hydraulic processes in clay shales is required for developing advanced constitutive models, which can be extrapolated to long-term deformation. Although many geomechanical tests have been performed to characterise the bulk mechanical, hydro-mechanical, and failure behaviour of Opalinus Clay, important questions remain about micromechanisms: how do microstructural evolution and deformation mechanisms control the complex rheology? What is the in situ microstructural shear evolution, and can it be mimicked in the laboratory? In this contribution, scanning electron microscopy (SEM) was used to image microstructures in an Opalinus Clay sample deformed in an unconsolidated–undrained triaxial compression test at 4 MPa confining stress followed by argon broad ion beam (BIB) polishing. Axial load was applied (sub-)perpendicular to bedding until the sample failed. The test was terminated at an axial strain of 1.35 %. Volumetric strain measurements showed bulk compaction throughout the compression test. Observations on the centimetre to micrometre scale showed that the samples exhibited shear failure and that deformation localised by forming a network of micrometre-wide fractures, which are oriented with angles of 50∘ with respect to horizontal. In BIB–SEM at the grain scale, macroscale fractures are shown to be incipient shear bands, which show dilatant intergranular and intragranular microfracturing, granular flow, bending of phyllosilicate grains, and pore collapse in fossils. Outside these zones, no deformation microstructures were observed, indicating only localised permanent deformation. Thus, micromechanisms of deformation appear to be controlled by both brittle and ductile processes along preferred deformation bands. Anastomosing networks of fractures develop into the main deformation bands with widths up to tens of micrometres along which the sample fails. Microstructural observations and the stress–strain behaviour were integrated into a deformation model with three different stages of damage accumulation representative for the deformation of the compressed Opalinus Clay sample. Results on the microscale explain how the sample locally dilates, while bulk measurement shows compaction, with an inferred major effect on permeability by an increase in hydraulic conductivity within the deformation band. Comparison with the microstructure of highly strained Opalinus Clay in fault zones shows partial similarity and suggests that during long-term deformation additional solution–precipitation processes operate.
Abstract. A microphysics-based understanding of mechanical and hydraulic processes in clay shales is required for developing advanced constitutive models, which can be extrapolated to long-term deformation. Although many geomechanical laboratory tests have been performed to characterize the bulk mechanical, hydro-mechanical and failure behaviour of Opalinus Clay, important questions remain about microphysics: How do microstructural evolution and deformation mechanisms control the 15 complex rheology over time scales not accessible in the laboratory. In this contribution, Scanning Electron Microscopy (SEM) was used to image microstructures in an Opalinus Clay sample deformed in an unconsolidated-undrained triaxial compression test at 4 MPa confining stress followed by Argon Broad Ion Beam (BIB) polishing. Axial load was applied (sub-) perpendicular to bedding until the specimen failed. The test was terminated at an axial strain of 1.35 %. Volumetric strain measurements showed bulk compaction throughout the compression test. Observations on the cm- to μm-scale showed that deformation 20 localized by forming a network of μm-thick fractures. In BIB-SEM at the grain scale, incipient deformation zones show dilatant inter- and intragranular micro-cracking, granular flow, plastic deformation and bending of phyllosilicate grains, and pore collapse in fossils. Outside these zones, no deformation microstructures were observed indicating localized damage. Thus, microphysics of deformation appear to be controlled by both brittle and ductile processes along preferred orientations. Anastomosing networks of deformation bands develop into the main deformation bands along which the sample fails. 25 Microstructural observations and the stress-strain behaviour were integrated into a deformation model with three different stages of damage accumulation representative for the deformation of the compressed Opalinus Clay sample. Results on the microscale explain how the sample locally dilates while bulk measurement shows compaction, with an inferred major effect on permeability evolution. Comparison with the microstructure of highly strained Opalinus Clay in fault zones shows minor similarity and suggest that during long-term deformation additional solution-precipitation processes operate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.