Key Points
A subset of DHL patients may be cured, and some patients may benefit from intensive induction. Further investigations into the roles of SCT and novel agents are needed.
The CD20-directed monoclonal antibody rituximab established a new era in lymphoma therapy. Since then other epitopes on the lymphoma surface have been identified as potential targets for monoclonal antibodies (mAb). While most mAbs eliminate lymphoma cells mainly by antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity or direct cell death, others counter mechanisms utilized by malignant cells to evade immune surveillance. Expression of PD-L1 on malignant or stromal cells in the tumor environment for example leads to T-cell anergy. Targeting either PD-1 or PD-L1 via mAbs can indirectly eliminate cancer cells by unblocking the host intrinsic immune response. Yet another mechanism of targeted therapy with mAbs are bi-specific T-cell engagers (BiTE) such as blinatumomab, which directly engages the host immune cells. These examples highlight the broad spectrum of available therapies targeting the lymphoma surface with mAbs utilizing both passive and active immune pathways. Many of these agents have already demonstrated significant activity in clinical trials. In this review we will focus on novel CD20-directed antibodies as well as mAbs directed against newer targets like CD19, CD22, CD40, CD52 and CCR4. In addition we will review mAbs unblocking immune checkpoints and the BiTE blinatumomab. Given the success of mAbs and the expansion in active and passive immunotherapies, these agents will play an increasing role in the treatment of lymphomas.Electronic supplementary materialThe online version of this article (doi:10.1186/s13045-014-0058-4) contains supplementary material, which is available to authorized users.
The development of single-cell subclones, which can rapidly switch from dormant to dominant subclones, occur in the natural pathophysiology of multiple myeloma (MM) but is often "pressed" by the standard treatment of MM. These emerging subclones present a challenge, providing reservoirs for chemoresistant mutations. Technological advancement is required to track MM subclonal changes, as understanding MM's mechanism of evolution at the cellular level can prompt the development of new targeted ways of treating this disease. Current methods to study the evolution of subclones in MM rely on technologies capable of phenotypically and genotypically characterizing plasma cells, which include immunohistochemistry, flow cytometry, or cytogenetics. Still, all of these technologies may be limited by the sensitivity for picking up rare events. In contrast, more incisive methods such as RNA sequencing, comparative genomic hybridization, or whole-genome sequencing are not yet commonly used in clinical practice. Here we introduce the epidemiological diagnosis and prognosis of MM and review current methods for evaluating MM subclone evolution, such as minimal residual disease/multiparametric flow cytometry/next-generation sequencing, and their respective advantages and disadvantages. In addition, we propose our new single-cell method of evaluation to understand MM's mechanism of evolution at the molecular and cellular level and to prompt the development of new targeted ways of treating this disease, which has a broad prospect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.