Lipid vesicles are an important class of biomaterials that have a wide range of applications, including drug delivery, cosmetic formulations and model membrane platforms on solid supports. Depending on the application, properties of a vesicle population such as size distribution, charge and permeability need to be optimized. Preparation methods such as mechanical extrusion and sonication play a key role in controlling these properties, and yet the effects of vesicle preparation method on vesicular properties and integrity (e.g., shape, size, distribution and tension) remain incompletely understood. In this study, we prepared vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid by either extrusion or sonication, and investigated the effects on vesicle size distribution over time as well as the concomitant effects on the self-assembly of solid-supported planar lipid bilayers. Dynamic light scattering (DLS), quartz crystal microbalance with dissipation (QCM-D) monitoring, fluorescence recovery after photobleaching (FRAP) and atomic force microscopy (AFM) experiments were performed to characterize vesicles in solution as well as their interactions with silicon oxide substrates. Collectively, the data support that sonicated vesicles offer more robust control over the self-assembly of homogenous planar lipid bilayers, whereas extruded vesicles are vulnerable to aging and must be used soon after preparation.
Polymer-tethered lipid bilayers are promising models for biological membranes as they may provide a soft, lubricating environment with sufficient spacing between the substrate and bilayer for incorporating transmembrane proteins. We present such a system that uses a glycoacrylate-based telechelic lipopolymer in combination with a lipid analogue. Characterization of the mixed monolayers of lipopolymers and free lipids at the air-water interface is used to examine the molecular organization that dictates the final assembly properties. Isotherms indicate that the source of the dominating interactions, whether polymer interactions in the subphase or alkyl chain interactions, depends on both the tethering density and area per molecule. Moreover, a critical composition exists at which the alkyl chain interactions dominate the monolayer behavior regardless of the area per molecule. Isobaric creep and hysteresis experiments suggest that permanent states due to irreversible polymer-polymer interactions are not created as the monolayer is compressed. These data, combined with theoretical polymer predictions, are used to understand the organization of the monolayers at the air-water interface and, hence, the separation distance between the bottom of the bilayer and substrate in the water-swollen state of the final bilayer assembly. Atomic force microscopy is used to confirm that the measured separation distance of 11.2 nm is on the order of what would be predicted using a theoretical analysis for a representative 5 mol % lipopolymer-tethered bilayer. Next, the homogeneity of the final bilayer is probed at multiple scales. Fluorescence microscopy is used to demonstrate that homogeneous and continuous bilayers can be formed (within the optical resolution limit of 500 nm) with all polymer tethering densities used in this study. Atomic force microscopy studies demonstrate that homogeneity comparable to that of a solid-supported lipid bilayer can be achieved for a representative 5 mol % lipopolymer-tethered bilayer. Langmuir-Blodgett transfer conditions for depositing monolayers that can be used to create homogeneous, fluid bilayers are also discussed. Finally, the distal leaflet lateral mobility is measured using fluorescence recovery after photobleaching experiments and shown to be a function of the tethering density. A possible model for the mobility data is developed in which the tethered lipids in the proximal leaflet act as immobile lipid obstacles that couple to distal leaflet lipids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.