Melanin isolated from the ink sac of Sepia officinalis (Sepia melanin) has been proposed as a standard for natural eumelanin. There are no standard methods for the isolation, purification, and storage of melanins. Mild methods designed to preserve the native composition and structure of melanin are needed. The specific aim of the present work, using Sepia melanin, was to develop a mild and generally applicable protocol for the isolation and purification of melanins. It is well established that melanin polymers contain a large number of free carboxylic acid residues. These anionic residues are responsible for the cation exchange properties observed for melanins. Heating melanins with hydrochloric acid at reflux has been demonstrated to lead to extensive decarboxylation. Indeed, heat alone has been shown to cause decarboxylation, and care must be exercised to avoid such conditions. By analogy with cation exchange resins, melanins should be isolated and named according to the associated counterion (e.g., Sepia melanin--K+ form). The method reported here avoided extremes in pH and temperature, and was designed to yield melanin in the K+ form. Physical disaggregation of particulate melanin using a wet milling step was also found to facilitate removal of significant quantities of adsorbed protein. The following physical parameters were used to monitor the purification and to characterize the resultant melanin: pH, conductance, particle size, and diffuse reflectance spectroscopy.
Natural melanins are composed of two distinct portions; a protein fraction and a chromophoric backbone. There is no unequivocal evidence for covalent bonding between these two fractions, and standard protocols used in protein purification have failed to separate the protein fraction from the chromophoric fraction. In order to study the chromophoric backbone, many workers have resorted to harsh isolation and purification protocols that are now known to degrade and damage the chromophoric portion. These artifactual melanin preparations are poor models for valid chemical, physical, and biological studies. We have developed a mild isolation and purification protocol for melanins that takes into consideration both the particulate nature of natural melanins and the stability characteristics of the chromophoric fraction. Mathematical factoring of the quantitative amino acid data into the elemental analysis was used to obtain the empirical formula of the chromophoric backbone of melanins. The analyses have shown that melanins from various sources have significantly different amino acid compositions and contents, molar C/N ratios, and empirical formulae. This method successfully differentiates melanins from a variety of sources, namely, human hair, Sepia officinalis, Sigma Chemical Company (cat. no. M8631), autoxidation of dopa, and from the feathers of Rhode Island Red chickens. Analytical results from these studies are presented and discussed.
Melanin isolated from the ink sac of cuttle fish (Sepia melanin) is a proposed standard for natural eumelanin. Sepia melanin isolated by a standard protocol was submitted for both elemental analysis and quantitative amino acid analysis. The contribution of the detected amino acids to the elemental composition is subtracted from the total elemental analysis, and the resultant elemental composition reflects the composition of the Sepia melanin backbone chromophore. The assumption is made that, for eumelanins, there is only one nitrogen atom per monomeric unit, and thus, the empirical formula for the average monomeric Sepia melanin backbone chromophore was determined. Three key parameters can be determined for any melanin sample; namely, the molar C/N for the average monomeric unit, the formula weight of the average monomeric unit, and the total percent composition of amino acid residues. Three commonly used melanin preparations, namely, natural Sepia melanin, melanin prepared by the in vitro tyrosinase catalyzed polymerization of tyrosine (tyrosine-enzymatic melanin), and a polymer synthesized by the peroxide oxidative polymerization of tyrosine (tyrosine-chemical melanin), have been subjected to this standard method of characterization. Tyrosine-enzymatic and Sepia melanin are quite similar and tyrosine-chemical melanin is fundamentally different from the other two melanins.
Melanocytes are cells of neural crest origin residing at the dermal-epidermal juncture. They produce specialized organelles called melanosomes within which the biochemical processes of melanization occurs. UV radiation is capable of inducing melanogenesis and, during the biosynthesis of melanins, several of the putative precursors "leak out" of the melanosome and can be detected in the skin, serum and urine of individuals undergoing active melanogenesis. Most notable are the cysteinyldopas (formed by nucleophilic addition of cysteine to dopaquinone) and several dihydroxyindoles (formed by intramolecular cyclization of dopaquinone). These catechols often are methylated in the melanocyte to afford a mixture of the monomethoxy derivatives and, in some cases, the dimethoxy species. Recent investigations in our laboratories have demonstrated that the cysteinyldopas, dihydroxyindoles, and their various methylated derivatives are photochemically unstable. Irradiation with biologically relevant ultraviolet radiation (i.e. wavelengths greater than 300 nm) results in the rapid destruction of the precursors/metabolites and the production of a variety of free radical species. The photochemistry and potential photobiological significance of melanogenic intermediates is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.