Adequate perception of immunologically important pathogen-associated molecular patterns like lipopolysaccharide and bacterial lipoproteins is essential for efficient innate and adaptive immune responses. In the context of Gram-negative infection, bactericidal/permeability-increasing protein (BPI) neutralizes endotoxic activity of lipopolysaccharides, and thus prohibits hyperactivation. So far, no immunological function of BPI has been described in Gram-positive infections. Here, we show a significant elevation of BPI in Gram-positive meningitis and, surprisingly, a positive correlation between BPI and pro-inflammatory markers like TNFα. To clarify the underlying mechanisms, we identify BPI ligands of Gram-positive origin, specifically bacterial lipopeptides and lipoteichoic acids, and determine essential structural motifs for this interaction. Importantly, the interaction of BPI with these newly defined ligands significantly enhances the immune response in peripheral blood mononuclear cells (PBMCs) mediated by Gram-positive bacteria, and thereby ensures their sensitive perception. In conclusion, we define BPI as an immune enhancing pattern recognition molecule in Gram-positive infections.
Gram-negative sepsis driven by lipopolysaccharide (LPS) has detrimental outcomes, especially in neonates. The neutrophil-derived bactericidal/permeability-increasing protein (BPI) potently neutralizes LPS. Interestingly, polymorphism of the BPI gene at position 645 (rs4358188) corresponds to a favorable survival rate of these patients in the presence of at least one allele 645 A as opposed to 645 G. When we exploited the existing X-ray crystal structure, the corresponding amino acid at position 216 was revealed as surface exposed and proximal to the lipid-binding pocket in the N-terminal domain of BPI. Our further analysis predicted a shift in surface electrostatics by a positively charged lysine (BPI216K) exchanging a negatively charged glutamic acid (BPI216E). To investigate differences in interaction with LPS, we expressed both BPI variants recombinantly. The amino acid exchange neither affected affinity towards LPS nor altered bactericidal activity. However, when stimulating human peripheral blood mononuclear cells, BPI216K exhibited a superior LPS-neutralizing capacity (IC50 12.0 ± 2.5 pM) as compared to BPI216E (IC50 152.9 ± 113.4 pM, p = 0.0081) in respect to IL-6 secretion. In conclusion, we provide a functional correlate to a favorable outcome of sepsis in the presence of BPI216K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.