BACKGROUND AND PURPOSE:Brain tumors affecting language-relevant areas may influence language lateralization. The purpose of this study was to systematically investigate language lateralization in brain tumor patients using clinical language fMRI, comparing the results with a group of healthy volunteers.
BackgroundTo evaluate the cytotoxic effect of carbon ion radiotherapy and chemotherapy in glioblastoma cells in vitro.Methods and MaterialsThe human glioblastoma (GBM) cell line U87 was irradiated with photon radiotherapy (RT) doses of 2 Gy, 4 Gy and 6 Gy. Likewise, irradiation with carbon ions was performed with single carbon doses of 0.125, 0.5, 2 and 3 Gy. Four chemotherapeutic substances, camptothecin, gemcitabine, paclitaxel and cisplatinum, were used for single and combination experiments. The assessment of the effect of single and double treatment on cell viability was performed using the clonogenic growth assay representing the radiobiological gold standard.ResultsThe RBE of carbon ions ranges between 3.3 and 3.9 depending on survival level and dose. All chemotherapeutic substances showed a clear does-response relationhips. in their characteristic concentrations. For subsequent combination experiments, two dose levels leading to low and medium reduction of cell survival were chosen. Combination experiments showed additive effects independently of the drugs' mechanisms of action. Paclitaxel and campthothecin demonstrated the most prominent cytotoxic effect in combination with carbon ion radiotherapy.ConclusionIn conclusion, combination of carbon ion radiotherapy with chemotherapies of different mechanisms of action demonstrates additive effects. The most dominant effect was produced by paclitaxel, followed by camptothecin, as espected from previously published work. The present data serve as an important radiobiological basis for further combination experiments, as well as clinical studies on combination treatments.
Blood-oxygenation-level-dependent (BOLD) contrast in magnetic resonance (MR) imaging of skeletal muscle mainly depends on changes of oxygen saturation in the microcirculation. In recent years, an increasing number of studies have evaluated the clinical relevance of skeletal muscle BOLD MR imaging in vascular diseases, such as peripheral arterial occlusive disease, diabetes mellitus, and chronic compartment syndrome. BOLD imaging combines the advantages of MR imaging, i.e., high spatial resolution, no exposure to ionizing radiation, with functional information of local microvascular perfusion. Due to intrinsic contrast provoked via changes in hemoglobin oxygen saturation, it is a safe and easy applicable procedure on standard whole-body MR devices. Therefore, BOLD MR imaging of skeletal muscle is a potential new diagnostic tool in the clinical evaluation of vascular, inflammatory, and muscular pathologies. Our review focuses on the current evidence concerning the use of BOLD MR imaging of skeletal muscle under pathological conditions and highlights ways for future clinical and scientific applications.
Purpose: To evaluate the dependence of skeletal muscle blood oxygenation level-dependent (BOLD) effect and time course characteristics on magnetic field strength in healthy volunteers using an ischemia/reactive hyperemia paradigm.Materials and Methods: Two consecutive skeletal muscle BOLD magnetic resonance imaging (MRI) measurements in eight healthy volunteers were performed on 1.5 T and 3.0 T whole-body MRI scanners. For both measurements a fat-saturated multi-shot multiecho gradient-echo EPI sequence was applied. Temporary vascular occlusion was induced by suprasystolic cuff compression of the thigh. T2* time courses were obtained from two different calf muscles and characterized by typical curve parameters. Ischemia-and hyperemia-induced changes in R2* (DR2*) were calculated for both muscles in each volunteer at the two field strengths.Results: Skeletal muscle BOLD changes are dependent on magnetic field strength as the ratio DR2*(3.0 T)/ DR2*(1.5 T) was found to range between 1.6 and 2.2. Regarding time course characteristics, significantly higher relative T2* changes were found in both muscles at 3.0 T.Conclusion: The present study shows an approximately linear field strength dependence of DR2* in the skeletal muscle in response to ischemia and reactive hyperemia. Using higher magnetic fields is advisable for future BOLD imaging studies of peripheral limb pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.