Customer journey analysis is important for organizations to get to know as much as possible about the main behavior of their customers. This provides the basis to improve the customer experience within their organization. This paper addresses the problem of predicting the occurrence of a certain activity of interest in the remainder of the customer journey that follows the occurrence of another specific activity. For this, we propose the HIAP framework which uses process mining techniques to analyze customer journeys. Different prediction models are researched to investigate which model is most suitable for high importance activity prediction. Furthermore the effect of using a sliding window or landmark model for (re)training a model is investigated. The framework is evaluated using a health insurance real dataset and a benchmark data set. The efficiency and prediction quality results highlight the usefulness of the framework under various realistic online business settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.