Escherichia coli holoenzyme RNA polymerase is composed of a core enzyme (E, 1 subunit composition ␣ 2 Ј) associated with one of seven sigma ()-factors that program the complex to engage and initiate transcription at different sets of promoters (1). Thus, the levels and binding properties of alternative -subunits together with factors that modulate their ability to associate with core RNA polymerase are critical for the relative composition of the multiple holoenzymes available for transcription of the distinct promoter classes within the prokaryotic genome. The seven different -factors of E. coli fall into two groups. The larger of these comprises six factors that share notable sequence and functional similarities to the major D
SummaryThe RNA polymerase-binding protein DksA is a cofactor required for guanosine tetraphosphate (ppGpp)-responsive control of transcription from s 70 promoters. Here we present evidence: (i) that both DksA and ppGpp are required for in vivo s 54 transcription even though they do not have any major direct effects on s 54 transcription in reconstituted in vitro transcription and s -factor competition assays, (ii) that previously defined mutations rendering the housekeeping s
Genome-wide association studies have identified several type 2 diabetes (T2D) risk loci linked to impaired β-cell function. The identity and function of the causal genes in these susceptibility loci remain, however, elusive. The HHEX/IDE T2D locus is associated with decreased insulin secretion in response to oral glucose stimulation in humans. Here we have assessed β-cell function in Ide knockout (KO) mice. We find that glucose-stimulated insulin secretion (GSIS) is decreased in Ide KO mice due to impaired replenishment of the releasable pool of granules and that the Ide gene is haploinsufficient. We also show that autophagic flux and microtubule content are reduced in β-cells of Ide KO mice. One important cellular role for IDE involves the neutralization of amyloidogenic proteins, and we find that α-synuclein and IDE levels are inversely correlated in β-cells of Ide KO mice and T2D patients. Moreover, we provide evidence that both gain and loss of function of α-synuclein in β-cells in vivo impair not only GSIS but also autophagy. Together, these data identify the Ide gene as a regulator of GSIS, suggest a molecular mechanism for β-cell degeneration as a consequence of Ide deficiency, and corroborate and extend a previously established important role for α-synuclein in β-cell function.
SummaryDivergent transcription of a regulatory gene and a cognate promoter under its control is a common theme in bacterial regulatory circuits. This genetic organization is found for the dmpR gene that encodes the substrate-responsive specific regulator of the s
Pseudomonas-derived regulators DmpR and XylR are structurally and mechanistically related54 -dependent activators that control transcription of genes involved in catabolism of aromatic compounds. The binding of distinct sets of aromatic effectors to these regulatory proteins results in release of a repressive interdomain interaction and consequently allows the activators to promote transcription from their cognate target promoters. The DmpR-controlled Po promoter region and the XylR-controlled Pu promoter region are also similar, although homology is limited to three discrete DNA signatures for binding 54 RNA polymerase, the integration host factor, and the regulator. These common properties allow cross-regulation of Pu and Po by DmpR and XylR in response to appropriate aromatic effectors. In vivo, transcription of both the DmpR/Po and XylR/Pu regulatory circuits is subject to dominant global regulation, which results in repression of transcription during growth in rich media. Here, we comparatively assess the contribution of (p)ppGpp, the FtsH protease, and a component of an alternative phosphoenolpyruvate-sugar phosphotransferase system, which have been independently implicated in mediating this level of regulation. Further, by exploiting the cross-regulatory abilities of these two circuits, we identify the target component(s) that are intercepted in each case. The results show that (i) contrary to previous speculation, FtsH is not universally required for transcription of 54 -dependent systems; (ii) the two factors found to impact the XylR/Pu regulatory circuit do not intercept the DmpR/Po circuit; and (iii) (p)ppGpp impacts the DmpR/Po system to a greater extent than the XylR/Pu system in both the native Pseudomonas putida and a heterologous Escherichia coli host. The data demonstrate that, despite the similarities of the specific regulatory circuits, the host global regulatory network latches onto and dominates over these specific circuits by exploiting their different properties. The mechanistic implications of how each of the host factors exerts its action are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.