Experiments with scala-tympani (ST) phantoms are used to evaluate new electrode arrays and cochlear-implant insertion techniques. To date, phantoms have not accounted for clinical orientations and geometric differences between round-window (RW) insertions and anteroinferior cochleostomy insertions. For improved assessments of insertion experiments, we present a scala-tympani phantom that offers three distinct benefits over previous phantoms: it mimics the standard otologic position, it accommodates for both round-window and anteroinferior cochleostomy insertions, and it incorporates a visual coordinate system based on industry consensus making standardized angular measurements possible.
Cochlear implants have become a standard treatment for many with severe to profound sensorineural hearing loss. However, delicate cochlear structures can be damaged during surgical insertion, which can lead to loss of residual hearing and decreased implant effectiveness. We propose a magnetic guidance concept in which a magnetically tipped cochlear implant is guided as it is inserted into the cochlea. In a scaled in vitro experimental study, we record insertion forces for nonguided and magnetically guided insertion experiments and compare the results. Results indicate that magnetic guidance reduced insertion forces by approximately 50%. Using first principles, we discuss the effects of scaling down our in vitro experiments, and account for realistic clinical dimensions. We conclude that scale–down effects are negligible, but to produce the same field strength as in our experiments and provide sufficient clearance between the patient and the manipulator, the magnet dimensions should be increased by approximately four times.
Hypothesis:Insertion forces can be reduced by magnetically guiding the tip of lateral-wall cochlear-implant electrode arrays during insertion via both cochleostomy and the round window.Background:Steerable electrode arrays have the potential to minimize intracochlear trauma by reducing the severity of contact between the electrode-array tip and the cochlear wall. However, steerable electrode arrays typically have increased stiffness associated with the steering mechanism. In addition, steerable electrode arrays are typically designed to curve in the direction of the basal turn, which is not ideal for round-window insertions, as the cochlear hook's curvature is in the opposite direction. Lateral-wall electrode arrays can be modified to include magnets at their tips, augmenting their superior flexibility with a steering mechanism. By applying magnetic torque to the tip, an electrode array can be navigated through the cochlear hook and the basal turn.Methods:Automated insertions of candidate electrode arrays are conducted into a scala-tympani phantom with either a cochleostomy or round-window opening. The phantom is mounted on a multi-degree-of-freedom force sensor. An external magnet applies the necessary magnetic bending torque to the magnetic tip of a modified clinical electrode array, coordinated with the insertion, with the goal of directing the tip down the lumen. Steering of the electrode array is verified through a camera.Results:Statistical t-test results indicate that magnetic guidance does reduce insertion forces by as much as 50% with certain electrode-array models. Direct tip contact with the medial wall through the cochlear hook and the lateral wall of the basal turn is completely eliminated. The magnetic field required to accomplish these insertions varied from 77 to 225 mT based on the volume of the magnet at the tip of the electrode array. Alteration of the tip to accommodate a tiny magnet is minimal and does not change the insertion characteristic of the electrode array unless the tip shape is altered.Conclusion:Magnetic guidance can eliminate direct tip contact with the medial walls through the cochlear hook and the lateral walls of the basal turn. Insertion-force reduction will vary based on the electrode-array model, but is statistically significant for all models tested. Successful steering of lateral-wall electrode arrays is accomplished while maintaining its superior flexibility.
Magnetic guidance of cochlear-implant electrode arrays during insertion has been demonstrated in vitro to reduce insertion forces, which is believed to be correlated to a reduction in trauma. In those prior studies, the magnetic dipole-field source (MDS) was configured to travel on a path that would be coincident with the cochlea’s modiolar axis, which was an unnecessary constraint that was useful to demonstrate feasibility. In this paper, we determine the optimal configuration (size and location) of a spherical-permanent-magnet MDS needed to accomplish guided insertions with a 100 mT field strength required at the cochlea, and we provide a methodology to perform such an optimization more generally. Based on computed-tomography scans of 30 human subjects, the MDS should be lateral-to and slightly anterior-to the cochlea with an approximate radius (mean and standard deviation across subjects) of 64 mm and 4.5 mm, respectively. We compare these results to the modiolar configuration and find that the volume of the MDS can be reduced by a factor of five with a 43% reduction in its radius by moving it to the optimal location. We conservatively estimate that the magnetic forces generated by the optimal configuration are two orders of magnitude below the threshold needed to puncture the basilar membrane. Although subject-specific optimal configurations are computed in this paper, a one-size-fits-all version with a radius of approximately 75 mm is more robust to registration error and likely more practical. Finally, we explain how to translate the results obtained to an electromagnetic MDS.
Hypothesis: Undesirable forces applied to the basilar membrane during surgical insertion of lateral-wall cochlearimplant electrode arrays (EAs) can be reduced via robotic insertion with magnetic steering of the EA tip. Background: Robotic insertion of magnetically steered lateral-wall EAs has been shown to reduce insertion forces in vitro and in cadavers. No previous study of robot-assisted insertion has considered force on the basilar membrane. Methods: Insertions were executed in an open-channel scala-tympani phantom. A force plate, representing the basilar membrane, covered the channel to measure forces in the direction of the basilar membrane. An electromagnetic source generated a magnetic field to steer investigational EAs with permanent magnets at their tips, while a robot performed the insertion. Results: When magnetic steering was sufficient to pull the tip of the EA off of the lateral wall of the channel, it resulted in at least a 62% reduction of force on the phantom basilar membrane at insertion depths beyond 14.4 mm ( p < 0.05), and these beneficial effects were maintained beyond approximately the same depth, even with 10 degrees of error in the estimation of the modiolar axis of the cochlea. When magnetic steering was not sufficient to pull the EA tip off of the lateral wall, a significant difference from the nomagnetic-steering case was not found. Conclusions: This in vitro study suggests that magnetic steering of robotically inserted lateral-wall cochlear-implant EAs, given sufficient steering magnitude, can reduce forces on the basilar membrane in the first basilar turn compared with robotic insertion without magnetic steering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.