Mean-field games arise in various fields including economics, engineering and machine learning. They study strategic decision making in large populations where the individuals interact via certain mean-field quantities. The ground metrics and running costs of the games are of essential importance but are often unknown or only partially known. In this paper, we propose mean-field game inverse-problem models to reconstruct the ground metrics and interaction kernels in the running costs. The observations are the macro motions, to be specific, the density distribution and velocity field of the agents. They can be corrupted by noise to some extent. Our models are PDE constrained optimization problems, which are solvable by first-order primal-dual methods. Besides, we apply Bregman iterations to find the optimal model parameters. We numerically demonstrate that our model is both efficient and robust to noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.