Excavating sponges are among the most important macro-eroders of carbonate substrates in marine systems. Their capacity to remove substantial amounts of limestone makes these animals significant players that can unbalance the reef carbonate budget of tropical coral reefs. Nevertheless, excavating sponges are currently rarely incorporated in standardized surveys and experimental work is often restricted to a few species. Here were provide chemical and mechanical bioerosion rates for the six excavating sponge species most commonly found on the shallow reef of Curaçao (southern Caribbean): Cliona caribbaea, C. aprica, C. delitrix, C. amplicavata, Siphonodictyon brevitubulatum and Suberea flavolivescens. Chemical, mechanical and total bioerosion rates were estimated based on various experimental approaches applied to sponge infested limestone cores. Conventional standing incubation techniques were shown to strongly influence the chemical dissolution signal. Final rates, based on the change in alkalinity of the incubation water, declined significantly as a function of incubation time. This effect was mitigated by the use of a flow-through incubation system. Additionally, we found that mechanically removed carbonate fragments collected in the flow-through chamber (1 h) as well as a long-term collection method (1 wk) generally yielded comparable estimates for the capacity of these sponges to mechanically remove substratum. Observed interspecific variation could evidently be linked to the adopted boring strategy (i.e. gallery-forming, cavity-forming or network-working) and presence or absence of symbiotic zooxanthellae. Notably, a clear diurnal pattern was found only in species that harbour a dense photosymbiotic community. In these species chemical erosion was substantially higher during the day. Overall, the sum of individually acquired chemical and mechanical erosion using flow-through incubations was comparable to rates obtained gravimetrically. Such consistency is a first in this field of research. These findings support the much needed confirmation that, depending on the scientific demand, the different approaches presented here can be implemented concurrently as standardized methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.