Carriers of the genetic DPYD*2A variant, resulting in dihydropyrimidine dehydrogenase deficiency, are at significantly increased risk of developing severe fluoropyrimidine-associated toxicity. Upfront DPYD*2A genotype-based dose reductions improve patient safety, but uncertainty exists whether this has a negative impact on treatment effectiveness. Therefore, our study investigated effectiveness and safety of DPYD*2A genotype-guided dosing. A cohort of 40 prospectively identified heterozygous DPYD*2A carriers, treated with a~50% reduced fluoropyrimidine dose, was identified. For effectiveness analysis, a matched pair-analysis was performed in which for each DPYD*2A carrier a matched DPYD*2A wild-type patient was identified. Overall survival and progression-free survival were compared between the matched groups. The frequency of severe (grade ≥ 3) treatment-related toxicity was compared to 1] a cohort of 1606 wild-type patients treated with full dose and 2] a cohort of historical controls derived from literature, i.e. 86 DPYD*2A variant carriers who received a full fluoropyrimidine dose. For 37 out of 40 DPYD*2A carriers, a matched control could be identified. Compared to matched controls, reduced doses did not negatively affect overall survival (median 27 months versus 24 months, p = 0.47) nor progression-free survival (median 14 months versus 10 months, p = 0.54). Risk of severe fluoropyrimidine-related toxicity in DPYD*2A carriers treated with reduced dose was 18%, comparable to wild-type patients (23%, p = 0.57) and significantly lower than the risk of 77% in DPYD*2A carriers treated with full dose (p < 0.001). Our study is the first to show that DPYD*2A genotype-guided dosing appears to have no negative effect on effectiveness of fluoropyrimidine-based chemotherapy, while resulting in significantly improved patient safety.
Introduction: Tacrolimus is the backbone immunosuppressant after solid organ transplantation. Tacrolimus has a narrow therapeutic window with large intra- and inter-patient pharmacokinetic variability leading to frequent over- and under-immunosuppression. While routine therapeutic drug monitoring (TDM) remains the standard of care, tacrolimus pharmacokinetic variability may be influenced by circadian rhythms. Our aim was to analyze tacrolimus pharmacokinetic/pharmacodynamic profiles on circadian rhythms comparing morning and night doses of a twice-daily tacrolimus formulation.Methods: This is a post-hoc analysis from a clinical trial to study the area under curve (AUC) and the area under effect (AUE) profiles of calcineurin inhibition after tacrolimus administration in twenty-five renal transplant patients. Over a period of 24 h, an intensive sampling (0, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12, 12.5, 13, 13.5, 14, 15, 20, and 24 h) was carried out. Whole blood and intracellular tacrolimus concentrations and calcineurin activity were measured by UHPLC-MS/MS.Results: Whole blood and intracellular AUC12–24 h and Cmax achieved after tacrolimus night dose was significantly lower than after morning dose administration (AUC0–12 h) (p < 0.001 for both compartments). AUE0–12 h and AUE12–24 h were not statistically different after morning and night doses. Total tacrolimus daily exposure (AUC0–24 h), in whole blood and intracellular compartments, was over-estimated when assessed by doubling the morning AUC0–12 h data.Conclusion: The lower whole blood and intracellular tacrolimus concentrations after night dose might be influenced by a distinct circadian clock. This significantly lower tacrolimus exposure after night dose was not translated into a significant reduction of the pharmacodynamic effect. Our study may provide conceptual bases for better understanding the TDM of twice-daily tacrolimus formulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.