Optical disdrometers can be used to estimate rainfall erosivity; however, the relative accuracy of different disdrometers is unclear. This study compared three types of optical laser-based disdrometers to quantify differences in measured rainfall characteristics and to develop correction factors for kinetic energy (KE). Two identical PWS100 (Campbell Scientific), one Laser Precipitation Monitor (Thies Clima) and a firstgeneration Parsivel (OTT) were collocated with a weighing rain gauge (OTT Pluvio 2) at a site in Austria. All disdrometers underestimated total rainfall compared to the rain gauge with relative biases from 2% to 29%. Differences in drop size distribution and velocity resulted in different KE estimates. By applying a linear regression to the KE-intensity relationship of each disdrometer, a correction factor for KE between the disdrometers was developed. This factor ranged from 1.15 to 1.36 and allowed comparison of KE between different disdrometer types despite differences in measured drop size and velocity.
An experimental laboratory setup was developed and evaluated in order to investigate detachment of soil particles by raindrop splash impact. The soil under investigation was a silty loam Cambisol, which is typical for agricultural fields in Central Europe. The setup consisted of a rainfall simulator and soil samples packed into splash cups (a plastic cylinder with a surface area of 78.5 cm2) positioned in the center of sediment collectors with an outer diameter of 45 cm. A laboratory rainfall simulator was used to simulate rainfall with a prescribed intensity and kinetic energy. Photographs of the soil’s surface before and after the experiments were taken to create digital models of relief and to calculate changes in surface roughness and the rate of soil compaction. The corresponding amount of splashed soil ranged between 10 and 1500 g m−2 h−1. We observed a linear relationship between the rainfall kinetic energy and the amount of the detached soil particles. The threshold kinetic energy necessary to initiate the detachment process was 354 J m−2 h−1. No significant relationship between rainfall kinetic energy and splashed sediment particle-size distribution was observed. The splash erosion process exhibited high variability within each repetition, suggesting a sensitivity of the process to the actual soil surface microtopography.
Soil erosion by water is affected by the rainfall erosivity, which controls the initial detachment and mobilization of soil particles. Rainfall erosivity is expressed through the rainfall intensity (I) and the rainfall kinetic energy (KE). KE–I relationships are an important tool for rainfall erosivity estimation, when direct measurement of KE is not possible. However, the rainfall erosivity estimation varies depending on the chosen KE–I relationship, as the development of KE–I relationships is affected by the measurement method, geographical rainfall patterns and data handling. This study investigated how the development of KE–I relationships and rainfall erosivity estimation is affected by the use of different disdrometer types. Rainfall data were collected in 1-min intervals from six optical disdrometers at three measurement sites in Austria, one site in Czech Republic and one site in New Zealand. The disdrometers included two disdrometers of each of the following types: the PWS100 Present Weather Sensor from Campbell Scientific, the Laser Precipitation Monitor from Thies Clima and the first generation Parsivel from OTT Hydromet. The fit of KE–I relationships from the literature varied among disdrometers and sites. Drop size and velocity distributions and developed KE–I relationships were device-specific and showed similarities for disdrometers of the same type across measurement sites. This hindered direct comparison of results from different types of disdrometers, even when placed at the same site. Thus, to discern spatial differences in rainfall characteristics the same type of measurement instrument should be used.
An understanding of splash erosion is the basis to describe the impact of rain characteristics on soil disturbance. In typical splash cup experiments, splashed soil is collected, filtered, and weighed. As a way to collect additional data, our experiments have been supplemented by a photogrammetric approach. A total of three soils were tested across three sites, one in the Czech Republic and two in Austria, all equipped with rain gauges and disdrometers to measure rainfall parameters. The structure from motion multiview stereo (SfM-MVS) photogrammetric method was used to measure the raindrops impact on the soil surface. The images were processed using Agisoft PhotoScan, resulting in orthophotos and digital elevation models (DEMs) with a resolution of 0.1 mm/pix. The surface statistics included the mean surface height (whose standard deviation was used as a measure of surface roughness), slope, and other parameters. These parameters were evaluated depending on soil
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.