East Asia is the second-largest mineral dust source in the world, after the Sahara. When dispersed in the atmosphere, mineral dust can alter the Earth’s radiation budget by changing the atmosphere’s absorption and scattering properties. Therefore, the mineralogical composition of dust is key to understanding the impact of mineral dust on the atmosphere. This paper presents new information on mineralogical dust during East Asian dust events that were obtained from laboratory dust measurements combined with satellite remote sensing dust detections from the Infrared Atmospheric Sounding Interferometer (IASI). However, the mineral dust in this region is lifted above the continent in the lower troposphere, posing constraints due to the large variability in the Land Surface Emissivity (LSE). First, a new methodology was developed to correct the LSE from a mean monthly emissivity dataset. The results show an adjustment in the IASI spectra by acquiring aerosol information. Then, the experimental extinction coefficients of pure minerals were linearly combined to reproduce a Gobi dust spectrum, which allowed for the determination of the mineralogical mass weights. In addition, from the IASI radiances, a spectral dust optical thickness was calculated, displaying features identical to the optical thickness of the Gobi dust measured in the laboratory. The linear combination of pure minerals spectra was also applied to the IASI optical thickness, providing mineralogical mass weights. Finally, the method was applied after LSE optimization, and mineralogical evolution maps were obtained for two dust events in two different seasons and years, May 2017 and March 2021. The mean dust weights originating from the Gobi Desert, Taklamakan Desert, and Horqin Sandy Land are close to the mass weights in the literature. In addition, the spatial variability was linked to possible dust sources, and it was examined with a backward trajectory model. Moreover, a comparison between two IASI instruments on METOP-A and -B proved the method’s applicability to different METOP platforms. Due to all of the above, the applied method is a powerful tool for exploiting dust mineralogy and dust sources using both laboratory optical properties and IASI detections.
<p>Spectrometers are powerful instruments to detect atmospheric aerosols, especially on satellites since they allow measurements at a global scale and over different spectral ranges with high spectral resolution. However, to fully exploit their capabilities and to link optical properties, chemical composition and mass concentration, it is essential to have reference optical properties of various particles and mainly the complex refractive indices (CRI). The CRI of a natural aerosol source can be determined from a real sample of it or applying the effective medium approximation using the CRI of the pure compounds present in the natural sample. But in that case, it is necessary to know the mass fraction of each individual compound and above all their CRI. Nevertheless, the literature and CRI databases provide only reflectance measurements on bulk materials or pressed pellets and over a limited wavelength range (Querry <em>et al.</em>, 1987).</p><p>In the present work, dust from the Gobi desert is studied as it is the second most active dust source, after the Sahara desert, in terms of mass emissions (Querol <em>et al.</em>, 2019). For that extinction spectra have been recorded for natural Gobi dust sample and for its major compounds (Illite, Calcite and Quartz). Particles as a powder in a vessel are generated thanks to a magnetic stirring and a flow of nitrogen (Hubert <em>et al.</em>, 2017). The continuous flow of aerosols is directed into a 10-meters multipass cell fitted to a Fourier transform infrared spectrometer and a 1-meter singlepass cell within a UV-Visible spectrometer which cover a continuous spectral range from 650 cm<sup>-1</sup> to 40000 cm<sup>-1</sup>. Moreover, at the exit of the spectrometers the size distribution is recorded by an aerodynamic particle sizer and a scanning mobility particle sizer which allow to measure size particles from 14 nm to 20 &#181;m. An inversion algorithm is carried out using experimental extinction spectra and the size distribution as input data (Herbin <em>et al.</em>, 2017). Applying the Mie theory and the single subtractive Kramers-Kr&#246;ning integral, the real and the imaginary part of the CRI are retrieved at each wavelength with an optimal estimation method.</p><p>For the first time, CRI of Illite has been retrieved with a high spectral resolution (1 cm<sup>-1</sup>) and over a wide spectral range for suspended particles. For calcite and quartz particles, the crystalline phase has to be considered by introducing the ordinary and extraordinary indices. These pure compound sets of CRI will be used for testing effective medium approximation on Gobi dust for which effective CRI have been also retrieved.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.