Highlights d RNAPII S5 phosphatase PNUTS-PP1 promotes RNAPII turnover on chromatin d Depletion of PNUTS leads to transcription-replication conflicts d WDR82 shows similar effects on RNAPII turnover and replication stress as PNUTS d CDC73 prevents RNAPII degradation and promotes replication stress after PNUTS depletion
Ataxia telangiectasia mutated and Rad3-related (ATR) kinase is a key factor activated by DNA damage and replication stress. An alternative pathway for ATR activation has been proposed to occur via stalled RNA polymerase II (RNAPII). However, how RNAPII might signal to activate ATR remains unknown. Here, we show that ATR signaling is increased after depletion of the RNAPII phosphatase PNUTS-PP1, which dephosphorylates RNAPII in its carboxy-terminal domain (CTD). High ATR signaling was observed in the absence and presence of ionizing radiation, replication stress and even in G1, but did not correlate with DNA damage or RPA chromatin loading. R-loops were enhanced, but overexpression of EGFP-RNaseH1 only slightly reduced ATR signaling after PNUTS depletion. However, CDC73, which interacted with RNAPII in a phospho-CTD dependent manner, was required for the high ATR signaling, R-loop formation and for activation of the endogenous G2 checkpoint after depletion of PNUTS. In addition, ATR, RNAPII and CDC73 co-immunoprecipitated. Our results suggest a novel pathway involving RNAPII, CDC73 and PNUTS-PP1 in ATR signaling and give new insight into the diverse functions of ATR.
Conflicts between transcription and replication are a major source of replication stress. Our recent findings show that proper dephosphorylation of Serine 5 in the carboxy-terminal domain (CTD) of DNA-directed RNA polymerase II subunit RPB1 is needed to prevent such conflicts in human cells.
Ataxia telangiectasia mutated and Rad3-related (ATR) kinase is a key factor activated by DNA damage and replication stress. Here, we show that ATR signaling is increased in human cells after depletion of the RNAPII phosphatase PNUTS-PP1, which dephosphorylates RNAPII on Ser 5 of its carboxy-terminal domain (CTD) (pRNAPII S5). Increased ATR signaling was observed in the presence and absence of ionizing radiation or replication stress and even in G1 phase after depletion of PNUTS. Vice versa, ATR signaling was reduced, in a PNUTS dependent manner, after inhibition of the CDK7 kinase mediating pRNAPII S5. Furthermore, CDC73, a well-known RNAPII-CTD binding protein, was required for the high ATR signaling after depletion of PNUTS and co-immunoprecipitated with RNAPII and ATR. These results suggest a novel pathway involving RNAPII, PNUTS-PP1 and CDC73 in ATR signaling and give new insight into the diverse functions of ATR.3 Introduction:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.