Potassium channels share a highly conserved stretch of eight amino acids, a K+ channel signature sequence. The conserved sequence falls within the previously defined P-region of voltage-activated K+ channels. In this study we investigate the effect of mutations in the signature sequence of the Shaker channel on K+ selectivity determined under bi-ionic conditions. Nonconservative substitutions of two threonine residues and the tyrosine residue leave selectivity intact. In contrast, mutations at some positions render the channel nonselective among monovalent cations. These findings are consistent with a proposal that the signature sequence contributes to a selectivity filter. Furthermore, the results illustrate that the hydroxyl groups at the third and fourth positions, and the aromatic group at position seven, are not essential in determining K+ selectivity.
The overall sequence similarity between the voltage-activated K+ channels and cyclic nucleotide-gated ion channels from retinal and olfactory neurons suggests that they arose from a common ancestor. On the basis of sequence comparisons, mutations were introduced into the pore of a voltage-activated K+ channel. These mutations confer the essential features of ion conduction in the cyclic nucleotide-gated ion channels; the mutant K+ channels display little selectivity among monovalent cations and are blocked by divalent cations. The property of K+ selectivity is related to the presence of two amino acids that are absent from the pore-forming region of the cyclic nucleotide-gated channels. These data demonstrate that very small differences in the primary structure of an ion channel can account for extreme functional diversity, and they suggest a possible connection between the pore-forming regions of K+, Ca2+, and cyclic nucleotide-gated ion channels.
Ion conduction and selectivity properties of KcsA, a bacterial ion channel of known structure, were studied in a planar lipid bilayer system at the single-channel level. Selectivity sequences for permeant ions were determined by symmetrical solution conductance (K+ > Rb+, NH4
+, Tl+ ≫ Cs+, Na+, Li+) and by reversal potentials under bi-ionic or mixed-ion conditions (Tl+ > K+ > Rb+ > NH4
+ ≫ Na+, Li+). Determination of reversal potentials with submillivolt accuracy shows that K+ is over 150-fold more permeant than Na+. Variation of conductance with concentration under symmetrical salt conditions is complex, with at least two ion-binding processes revealing themselves: a high affinity process below 20 mM and a low affinity process over the range 100–1,000 mM. These properties are analogous to those seen in many eukaryotic K+ channels, and they establish KcsA as a faithful structural model for ion permeation in eukaryotic K+ channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.