ObjectivesFibrosis is characterized by excessive tissue remodeling resulting from altered expression of various growth factors, cytokines and proteases. We hypothesized that matrix metalloproteinase (MMP) mediated degradation of type IV collagen, a main component of the basement membrane, will release peptide fragments (neo-epitopes) into the circulation. Here we present the development of two competitive enzyme-linked immunosorbent assays (ELISAs) for assessing the levels of specific fragments of type IV collagen α1 (C4M12a1) and α3 (C4M12a3) chains in serum as indicators of fibrosis.MethodsFragments of type IV collagen cleaved in vitro by MMP-12 were identified by mass spectrometry, and two were chosen for ELISA development due to their unique sequences. The assays were evaluated using samples from a carbon tetrachloride (CCl4) rat model of liver fibrosis and from patients with idiopathic pulmonary fibrosis (IPF) or chronic obstructive pulmonary disease (COPD).ResultsTwo technically robust ELISAs were produced using neo-epitope specific monoclonal antibodies. Mean serum C4M12a1 levels were significantly elevated in CCl4-treated rats compared with controls in weeks 12, 16, and 20, with a maximum increase of 102% at week 16 (p < 0.0001). Further, C4M12a1 levels correlated with the total collagen content of the liver in CCl4-treated rats (r = 0.43, p = 0.003). Mean serum C4M12a3 levels were significantly elevated in patients with mild, moderate, and severe IPF, and COPD relative to healthy controls, with a maximum increase of 321% in COPD (p < 0.0001).ConclusionsTwo assays measuring C4M12a1 and C4M12a3 enabled quantification of MMP mediated degradation of type IV collagen in serum. C4M12a1 was elevated in a pre-clinical model of liver fibrosis, and C4M12a3 was elevated in IPF and COPD patients. This suggests the use of these assays to investigate pathological remodeling of the basement membrane in different organs. However, validations in larger clinical settings are needed.
Background and aim:The current study utilized a carbon tetrachloride (CCl4)-induced liver fibrosis model to measure levels of the MMP9-mediated collagen type III degradation fragment CO3-610 (site of cleavage: KNGETGPQGP), during disease progression and regression, and to investigate a potential prognostic role of the biomarker.Materials and methods:72 female Sprague-Dawley rats aged 6 months old were injected with CCl4 twice a week over different periods of time to induce varying degrees of liver fibrosis. After 4, 6 and 8 weeks of treatment, administration of CCl4 was stopped. The 6- and 8-week treatment groups were left to regress for a further 6 or 12 weeks at which point they were sacrificed and livers removed and sectioned. Liver fibrosis was quantified using Visiopharm software to analyse Sirius red-stained sections. Serum levels of CO3-610 were measured in all animals using an ELISA assay as described by Barascuk et al.1Results:Quantitative histology revealed total collagen deposition in the liver increased as fibrosis progressed. In animals treated with CCl4 for 4 weeks, collagen comprised on average 4.94% of the total tissue in liver sections, while after 6 weeks the mean was 8.25%, and after 8 weeks, 9.11%. During the regression phase, the total collagen deposition gradually decreased to a mean of 6.9% and 5.09% for animals regressing 6 and 12 weeks respectively after 6 weeks treatment, and 6.27% for animals regressed 12 weeks after 8 weeks treatment. CO3-610 values increased progressively in rats treated for 4 weeks (by a mean of 55.0 ng/ml), 6 weeks (mean 61.1 ng/ml) and 8 weeks (mean 70.2 ng/ml). During the regression phase, CO3-610 values rapidly decreased by a mean of 28.9 ng/ml at 6 weeks and 21.6 ng/ml at 12 weeks in animals previously treated for 6 weeks, and by a mean of 19.52 ng/ml in animals treated for 8 weeks and regressed for 12 weeks. CO3-610 levels were statistically significantly correlated with total collagen during disease progression (r = 0.5701, P < 0.0001). No statistically significant correlation was observed during regression (r = 0.2081, P = 0.1138).Conclusion:Levels of the MMP-9 generated fragment of collagen type III, CO3-610, correlated with the degree of liver fibrosis in rats during the progression phase, but were not correlated with total collagen levels during regression. CO3-610 seems to be produced only under the CCL4 stimulus, and signifies CO3-610 as a potential marker of progression rather than regression. The corresponding steep elevations in levels of CO3-610 total collagen and collagen type III during liver fibrosis progression underline a potential prognostic capacity of the biomarker.
BackgroundThe proteoglycan biglycan (BGN) is involved in collagen fibril assembly and its fragmentation is likely to be associated with collagen turnover during the pathogenesis of diseases which involve dysregulated extracellular matrix remodeling (ECMR), such as rheumatoid arthritis (RA) and liver fibrosis. The scope of the present study was to develop a novel enzyme-linked immunosorbent assay (ELISA) for the measurement of a MMP-9 and MMP-12-generated biglycan neo-epitope and to test its biological validity in a rat model of RA and in two rat models of liver fibrosis, chosen as models of ECMR.ResultsBiglycan was cleaved in vitro by MMP-9 and -12 and the 344′YWEVQPATFR′353 peptide (BGM) was chosen as a potential neo-epitope. A technically sound competitive ELISA for the measurement of BGM was generated and the assay was validated in a bovine cartilage explant culture (BEX), in a collagen induced model of rheumatoid arthritis (CIA) and in two different rat models of liver fibrosis: the carbon tetrachloride (CCL4)-induced fibrosis model, and the bile duct ligation (BDL) model. Significant elevation in serum BGM was found in CIA rats compared to controls, in rats treated with CCL4 for 16 weeks and 20 weeks compared to the control groups as well as in all groups of rats subject to BDL compared with sham operated groups. Furthermore, there was a significant correlation of serum BGM levels with the extent of liver fibrosis determined by the Sirius red staining of liver sections in the CCL4 model.ConclusionWe demonstrated that the specific tissue remodeling product of MMPs-degraded biglycan, namely the neo-epitope BGM, is correlated with pathological ECMR. This assay represents both a novel marker of ECM turnover and a potential new tool to elucidate biglycan role during the pathological processes associated with ECMR.
BackgroundProteolytic degradation of Type I Collagen by proteases may play an important role in remodeling of atherosclerotic plaques, contributing to increased risk of plaque rupture.The aim of the current study was to investigate whether human macrophage foam cells degrade the extracellular matrix (ECM) of atherosclerotic plaques by cathepsin K mediated processes.MethodsWe 1) cultured human macrophages on ECM and measured cathepsin K generated fragments of type I collagen (C-terminal fragments of Type I collagen (CTX-I) 2) investigated the presence of CTX-I in human coronary arteries and 3) finally investigated the clinical potential by measuring circulating CTX-I in women with and without radiographic evidence of aortic calcified atherosclerosis.ResultsImmune-histochemistry of early and advanced lesions of coronary arteries demonstrated co-localization of Cathepsin-K and CTX-I in areas of intimal hyperplasia and in shoulder regions of advanced plaques. Treatment of human monocytes with M-CSF or M-CSF+LDL generated macrophages and foam cells producing CTX-I when cultured on type I collagen enriched matrix. Circulating levels of CTX-I were not significantly different in women with aortic calcifications compared to those without.ConclusionsHuman macrophage foam cells degrade the atherosclerotic plaques though cathepsin K mediated processes, resulting in increase in levels of CTX-I. Serum CTX-I was not elevated in women with aortic calcification, likely due to the contribution of CTX-I from osteoclastic bone resorption which involves Cathepsin-K. The human macrophage model system may be used to identify important pathway leading to excessive proteolytic plaque remodeling and plaque rupture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.