EBV latent antigen EBNA3C is indispensible for in vitro B-cell immortalization resulting in continuously proliferating lymphoblastoid cell lines (LCLs). EBNA3C was previously shown to target pRb for ubiquitin-proteasome mediated degradation, which facilitates G1 to S transition controlled by the major transcriptional activator E2F1. E2F1 also plays a pivotal role in regulating DNA damage induced apoptosis through both p53-dependent and -independent pathways. In this study, we demonstrate that in response to DNA damage LCLs knocked down for EBNA3C undergo a drastic induction of apoptosis, as a possible consequence of both p53- and E2F1-mediated activities. Importantly, EBNA3C was previously shown to suppress p53-induced apoptosis. Now, we also show that EBNA3C efficiently blocks E2F1-mediated apoptosis, as well as its anti-proliferative effects in a p53-independent manner, in response to DNA damage. The N- and C-terminal domains of EBNA3C form a stable pRb independent complex with the N-terminal DNA-binding region of E2F1 responsible for inducing apoptosis. Mechanistically, we show that EBNA3C represses E2F1 transcriptional activity via blocking its DNA-binding activity at the responsive promoters of p73 and Apaf-1 apoptosis induced genes, and also facilitates E2F1 degradation in an ubiquitin-proteasome dependent fashion. Moreover, in response to DNA damage, E2F1 knockdown LCLs exhibited a significant reduction in apoptosis with higher cell-viability. In the presence of normal mitogenic stimuli the growth rate of LCLs knockdown for E2F1 was markedly impaired; indicating that E2F1 plays a dual role in EBV positive cells and that active engagement of the EBNA3C-E2F1 complex is crucial for inhibition of DNA damage induced E2F1-mediated apoptosis. This study offers novel insights into our current understanding of EBV biology and enhances the potential for development of effective therapies against EBV associated B-cell lymphomas.
SummaryDeciphering the mechanisms that regulate the quiescence of adult neural stem cells (NSCs) is crucial for the development of therapeutic strategies based on the stimulation of their endogenous regenerative potential in the damaged brain. We show that LeXbright cells sorted from the adult mouse subventricular zone exhibit all the characteristic features of quiescent NSCs. Indeed, they constitute a subpopulation of slowly dividing cells that is able to enter the cell cycle to regenerate the irradiated niche. Comparative transcriptomic analyses showed that they express hallmarks of NSCs but display a distinct molecular signature from activated NSCs (LeX+EGFR+ cells). Particularly, numerous membrane receptors are expressed on quiescent NSCs. We further revealed a different expression pattern of Syndecan-1 between quiescent and activated NSCs and demonstrated its role in the proliferation of activated NSCs. Our data highlight the central role of the stem cell microenvironment in the regulation of quiescence in adult neurogenic niches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.