Structure-activity studies for the adipokinetic hormone receptor of insects were for the first time performed in a cellular expression system. A series of single amino acid replacement analogues for the endogenous adipokinetic hormone of Drosophila melanogaster (pGlu-Leu-Thr-Phe-Ser-Pro-Asp-Trp-NH(2)) were screened for activity with a bioluminescence cellular assay, expressing the G-protein coupled receptor. For this series of peptide analogues, one amino acid of the N-terminal tetrapeptide was successively replaced by alanine, while those of the C-terminal tetrapeptide were successively substituted by glycine; other modifications included the blocked N- and C-termini that were replaced by an acetylated alanine and a hydroxyl group, respectively. The analogue series was tested on the AKH receptors of two dipteran species, D. melanogaster and Anopheles gambiae. The blocked termini of the AKH peptide probably play a minor role in receptor interaction and activation, but are considered functionally important elements to protect the peptide against exopeptidases. In contrast, the amino acids at positions 2, 3, 4 and 5 from the N-terminus all seem to be crucial for receptor activation. This can be explained by the potential presence of a β-strand in this part of the peptide that interacts with the receptor. The inferred β-strand is probably followed by a β-turn in which the amino acids at positions 5-8 are involved. In this β-turn, the residues at positions 6 and 8 seem to be essential, as their substitutions induce only a very low degree of receptor activation. Replacement of Asp(7), by contrast, does not influence receptor activation at all. This implies that its side chain is folded inside the β-turn so that no interaction with the receptor occurs.
Tissue is the most relevant biological material to gather insight in disease mechanisms by means of omics technologies. However, fresh frozen tissue, which is generally regarded as the best imaginable source for such studies, is often not available. In case it is available, the different ways of storage (e.g. -20°C, -80°C, liquid nitrogen, etc.) hamper the conduction of reproducible multicenter studies because of different protein degradation rates. Formalin-fixed paraffin-embedded (FFPE) tissue on the contrary is considered as a valuable alternative for fresh frozen tissue, because only a few standard operation procedures are applied worldwide for the preparation of these tissues and because they are all stored in the same way. However, a study on the impact of the different preparation protocols for FFPE tissue was still lacking. Therefore, Bronsert et al. in this issue [Bronsert, P., Weißer, J., Biniossek, M. L., Kuehs, M. et al., Proteomics Clin. Appl. 2014, 8 786-804] conducted such a study that provides proof that there is no significant effect between these sample preparations procedures, and thereby they further open the gate for FFPE tissues to enter the field of clinical proteomics.
A qualitative kinetic study on the stereoselective hepatic metabolism of chloroquine was undertaken by separately incubating chloroquine enantiomers with rat liver microsomes. The dependency of desethylchloroquine formation on NADPH suggests a cytochrome P-450 isozyme catalysed metabolism. Over a wide concentration range (1-300 microM), chloroquine metabolism appeared not to follow simple Michaelis-Menten kinetics. The enantiomeric ratio (R/S) of desethylchloroquine was dependent on concentration, and ranged from 8 at 1 microM to 1 at 300 microM. Mutual enantiomer--enantiomer interaction studies at low concentration (1-5 microM) revealed that the formation of (R)-desethylchloroquine was strongly inhibited by (S)-chloroquine. The findings of the present study support the hypothesis that a high-affinity/low capacity enzyme is capable of stereoselective discrimination. At this point, it remains to be proven whether stereoselective metabolism and enantiomer-enantiomer interactions affect the in vivo disposition of chloroquine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.