Human activity causes vibrations that propagate into the ground as high-frequency seismic waves. Measures to mitigate the COVID-19 pandemic caused widespread changes in human activity, leading to a months-long reduction in seismic noise of up to 50%. The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record. While the reduction is strongest at surface seismometers in populated areas, this seismic quiescence extends for many kilometers radially and hundreds of meters in depth. This provides an opportunity to detect subtle signals from subsurface seismic sources that would have been concealed in noisier times and to benchmark sources of anthropogenic noise. A strong correlation between seismic noise and independent measurements of human mobility suggests that seismology provides an absolute, real-time estimate of population dynamics.
We report systematic seismic velocity variations in response to tidal deformation. Measurements are made on correlation functions of the ambient seismic wavefield at 2–8 Hz recorded by a dense array at the site of the Piñon Flat Observatory, Southern California. The key observation is the dependence of the response on the component of wave motion and coda lapse time τ. Measurements on the vertical correlation component indicate reduced wave speeds during periods of volumetric compression, whereas data from horizontal components show the opposite behavior, compatible with previous observations. These effects are amplified by the directional sensitivities of the different surface wave types constituting the early coda of vertical and horizontal correlation components to the anisotropic behavior of the compliant layer. The decrease of the velocity (volumetric) strain sensitivity Sθ with τ indicates that this response is constrained to shallow depths. The observed velocity dependence on strain implies nonlinear behavior, but conclusions regarding elasticity are more ambiguous. The anisotropic response is possibly associated with inelastic dilatancy of the unconsolidated, low‐velocity material above the granitic basement. However, equal polarity of vertical component velocity changes and deformation in the vertical direction indicate that a nonlinear Poisson effect is similarly compatible with the observed response pattern. Peak relative velocity changes at small τ are 0.03%, which translates into an absolute velocity strain sensitivity of Sθ≈5 × 103 and a stress sensitivity of 0.5 MPa−1. The potentially evolving velocity strain sensitivity of crustal and fault zone materials can be studied with the method introduced here.
The accuracy of Green's functions retrieved from seismic noise correlations in the microseism frequency band is limited by the uneven distribution of microseism sources at the surface of the Earth. As a result, correlation functions are often biased as compared to the expected Green's functions, and they can include spurious arrivals. These spurious arrivals are seismic arrivals that are visible on the correlation and do not belong to the theoretical impulse response. In this article, we propose to use Rayleigh wave spurious arrivals detected on correlation functions computed between European and United States seismic stations to locate microseism sources in the Atlantic Ocean. We perform a slant stack on a time distance gather of correlations obtained from an array of stations that comprises a regional deployment and a distant station. The arrival times and the apparent slowness of the spurious arrivals lead to the location of their source, which is obtained through a grid search procedure. We discuss improvements in the location through this methodology as compared to classical back projection of microseism energy. This method is interesting because it only requires an array and a distant station on each side of an ocean, conditions that can be met relatively easily.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.