In response to the health crisis presented by the COVID-19 pandemic, rapid development of safe and effective vaccines that elicit durable immune responses is imperative. Recent reports have raised the concern that antibodies in COVID-19 convalescent patients may not be long lasting and thus even these individuals may require vaccination. Vaccine candidates currently in clinical testing have focused on the SARS-CoV-2 wild type spike (S) protein (S-WT) as the major antigen of choice and while pre-clinical and early clinical testing have shown that S elicits an antibody response, we believe the optimal vaccine candidate should be capable of inducing robust, durable T-cell responses as well as humoral responses. We report here on a next generation bivalent human adenovirus serotype 5 (hAd5) vaccine capable of inducing immunity in patients with pre-existing adenovirus immunity, comprising both an S sequence optimized for cell surface expression (S-Fusion) and a conserved nucleocapsid (N) antigen designed to be transported to the endosomal subcellular compartment, with the potential to generate durable immune protection. Our studies suggest that this bivalent vaccine is optimized for immunogenicity as evidenced by the following findings: (i) The optimized S-Fusion displayed improved S receptor binding domain (RBD) cell surface expression compared to S-WT where little surface expression was detected; (ii) the expressed RBD from S-Fusion retained conformational integrity and recognition by ACE2-Fc; (iii) the viral N protein modified with an enhanced T-cell stimulation domain (ETSD) localized to endosomal/lysosomal subcellular compartments for MHC I/II presentation; and (iv) these optimizations to S and N (S-Fusion and N-ETSD) generated enhanced de novo antigen-specific B cell and CD4+ and CD8+ T-cell responses in antigen-naive pre-clinical models. Both the T-cell and antibody immune responses to S and N demonstrated a T-helper 1 (Th1) bias. The antibody responses were neutralizing as demonstrated by two independent SARS-CoV-2 neutralization assays. Based on these findings, we are advancing this next generation bivalent hAd5 S-Fusion + N-ETSD vaccine as our lead clinical candidate to test for its ability to provide robust, durable cell-mediated and humoral immunity against SARS-CoV-2 infection. Further studies are ongoing to explore utilizing this vaccine construct in oral, intranasal, and sublingual formulations to induce mucosal immunity in addition to cell-mediated and humoral immunity. The ultimate goal of an ideal COVID-19 vaccine is to generate long-term T and B cell memory.
We have developed a dual-antigen COVID-19 vaccine incorporating genes for a modified SARS-CoV-2 spike protein (S-Fusion) and the viral nucleocapsid (N) protein with an Enhanced T-cell Stimulation Domain (N-ETSD) to increase the potential for MHC class II responses. The vaccine antigens are delivered by a human adenovirus serotype 5 platform, hAd5 [E1-, E2b-, E3-], previously demonstrated to be effective in the presence of Ad immunity. Vaccination of rhesus macaques with the hAd5 S-Fusion + N-ETSD vaccine by subcutaneous prime injection followed by two oral boosts elicited neutralizing anti-S IgG and T helper cell 1-biased T-cell responses to both S and N that protected the upper and lower respiratory tracts from high titer (1 x 106 TCID50) SARS-CoV-2 challenge. Notably, viral replication was inhibited within 24 hours of challenge in both lung and nasal passages, becoming undetectable within 7 days post-challenge.
BackgroundTo address the dire need for a safe and effective vaccine to protect individuals from and reduce transmission of SARS-CoV-2, we developed a COVID-19 vaccine that elicits not only robust humoral responses but also activates T cells. Our bivalent vaccine expresses both an optimized viral spike (S) protein (S-Fusion) and the viral nucleocapsid (N) protein with an Enhanced T-cell Stimulation Domain (N-ETSD) that directs N to the endo/lysosomal subcellular compartment to enhance MHC class II responses. The vaccine antigens are delivered by the second-generation adenovirus serotype 5 [E1-, E2b-, E3-] platform (hAd5) that has been safely administered and found to be effective in generating tumor-specific T cells even in the presence of pre-existing adenovirus immunity. Here, we report our findings on the safety and efficacy of our hAd5 S-Fusion + N-ETSD subcutaneous (SC) prime and thermally-stable oral boost vaccine in generating SARS-CoV-2-neutralizing antibodies, eliciting N- and S-specific T-cell responses, and providing complete protection with the clearing of virus after challenge in Non-Human Primates (NHP). A key objective of the study was to explore the efficacy of a novel thermally-stable oral hAd5 S-Fusion + N-ETSD to serve as a booster dose following an SC prime.MethodsGroup 1 NHP received the hAd5 S-Fusion + N-ETSD vaccine on Days 0 and 14 by SC injection (1011 VP), and on Day 28 by a single oral boost (1010 VP); Group 2 received vaccination on the same schedule, but with an SC prime and two oral boosts. Group 3 placebo NHP were dosed with vehicle-only SC-oral-oral. Blood for the isolation of sera and PBMCs was collected throughout the study. ELISA was used for determination of anti-S IgG levels, cPass™ for presence of neutralizing antibodies, and ELISpot for interferon-γ(IFN-γ) and interleukin-4 (IL-4) secretion by T cells.On Study Day 56, all NHP were challenged with intratracheal/intranasal 1 × 106 TCID50/mL SARS-CoV-2. Bronchoalveolar lavage (BAL) samples were collected on Day 42 pre-challenge and at several time points post-challenge; nasal swabs were collected daily post-challenge. NHP were euthanized on Study Day 70 and tissue collected for histopathological analyses. Viral load and active viral replication were determined in BAL and nasal swab specimens by RT qPCR of genomic and subgenomic RNA, respectively. Safety was determined by cage-side observations such as weight as well as hematology and clinical chemistry analyses of blood.ResultsThe hAd5 S-Fusion + N-ETSD vaccine, both SC and oral, elicited no apparent toxicity seen in clinical chemistry, hematology, or cage-side observations. Neutralizing antibodies were induced in 9 of 10 vaccinated NHP and anti-S IgG positive titers in 10 out of 10. Th1 dominant T-cell responses were elicited by both S and N antigens, with responses being greater for N. Viral replication was inhibited from Day 1 post-SARS-CoV-2 challenge with complete protection in all (10/10) primates within 7 days of challenge from both nasal passages and lung. Replicating SARS-CoV-2 dropped immediately and was undetectable as soon 3 days post-challenge. There was a rapid decline in lymphocytes from the periphery on Day 1 post-challenge and a rebound within 3 days following challenge that was significantly higher by Day 14 post-challenge in Group 1 as compared to Group 3 placebo NHP.ConclusionsIn the rhesus macaque NHP model, the bivalent hAd5 S-Fusion + N-ETSD subcutaneous and oral vaccine provided complete protection of nasal passages and lung against SARS-CoV-2 challenge by eliciting neutralizing antibodies plus Th1 dominant N- and S-specific T-cell responses. Inhibition of viral replication within the first 24 hours post-challenge, in vaccinated NHP compared to placebo NHP, suggests the presence of SARS-CoV-2-specific cytotoxic T cells that rapidly cleared infected cells. The rapidity of clearance implies that shedding of live viruses may be attenuated as a result of vaccination and thus the vaccine has the potential to prevent transmission of virus by infected individuals. Clinical trials of hAd5 S-Fusion + N-ETSD are ongoing. The hAd5 S-Fusion + N-ETSD subcutaneous prime/boost vaccine has completed Phase 1 clinical trials and Phase 2/3 trials are actively recruiting. The thermally-stable oral vaccine will enter Phase 1 trials as a prime and boost, as well as explored to provide a boost to subcutaneous vaccination.
We have developed a COVID-19 vaccine, hAd5 S-Fusion + N-ETSD, that expresses SARS-CoV-2 spike (S) and nucleocapsid (N) proteins with modifications to increase immune responses delivered using a human adenovirus serotype 5 (hAd5) platform. Here, we demonstrate subcutaneous (SC) prime and SC boost vaccination of CD-1 mice with this dual-antigen vaccine elicits T-helper cell 1 (Th1) biased T-cell and humoral responses to both S and N that are greater than those seen with hAd5 S wild type delivering only unmodified S. We then compared SC to intranasal (IN) prime vaccination with SC or IN boosts and show that an IN prime with an IN boost is as effective at generating Th1 biased humoral responses as the other combinations tested, but an SC prime with an IN or SC boost elicits greater T cell responses. Finally, we used a combined SC plus IN (SC + IN) prime with or without a boost and found the SC + IN prime alone to be as effective in generating humoral and T-cell responses as the SC + IN prime with a boost. The finding that SC + IN prime-only delivery has the potential to provide broad immunity—including mucosal immunity—against SARS-CoV-2 supports further testing of this vaccine and delivery approach in animal models of viral challenge.
To address the need for a safe, efficacious vaccine against SARS-CoV-2 infection with the critical properties of enabling both blocking viral entry into cells and clearing virus from cells already infected, we have developed a bivalent, human adenovirus serotype 5 (hAd5) SARS-CoV-2 S-Fusion + N-ETSD vaccine that is currently in clinical testing. This vaccine uses the next-generation hAd5 [E1-, E2b-, E3-] platform previously used successfully in cancer patients with pre-existing adenovirus immunity, engineered to express both SARS-CoV-2 spike (S) protein modified to improve the generation of neutralizing antibodies to block entry of the virus, and nucleocapsid (N) protein with an Enhanced T cell Stimulation Domain (ETSD) to activate CD4+ and CD8+ T cells to clear the virus and block replication by killing infected cells. The targeting of N to endosomes and lysosomes to enhance CD4+ and CD8+ T-cell responses distinguishes our vaccine. In our previously reported pre-clinical studies we showed that in mice, the hAd5 S-Fusion + N-ETSD vaccine elicits both humoral and T-cell responses that are robust and T helper cell 1 (Th1) dominant. Here we report that the hAd5 S-Fusion + N-ETSD vaccine is recognized by anti-sera and T cells from previously SARS-CoV-2 infected patients, and that the presence of N is vital for T-cell recall. The findings presented herein: i. demonstrate specific recognition of hAd5 S-Fusion + N-ETSD infected cells by plasma antibodies from previously SARS-CoV-2 infected patients, but not antibodies from virus-naive subjects; ii. show enhanced binding of plasma SARS-CoV-2 antibodies from previously infected patients to monocyte-derived dendritic cells (MoDCs) expressing the hAd5 S-Fusion + N-ETSD vaccine as compared to hAd5 S-Fusion alone; iii. reveal N-ETSD localizes to vesicles associated with MHC class II antigen presentation, including endosomes, lysosomes, and autophagosomes in MoDCs; iv. demonstrate endosome/lysosome-targeted N-ETSD elicits higher interferon-gamma T-cell responses than cytoplasm-localized N; and v. N-ETSD alone or in the hAd5 S-Fusion + N-ETSD construct induces both CD4+ and CD8+ T cell memory recall. This recognition of hAd5 S-Fusion + N-ETSD vaccine antigens by T cells from previously SARS-CoV-2 infected patients, together with the ability of this vaccine candidate to elicit de novo immune responses in naive mice suggests that it re-capitulates the natural immune response to SARS-CoV-2 to activate both B and T cells towards viral neutralization and recognition of infected cells, critical for prevention of COVID-19 disease. Intriguingly, our hAd5 S-Fusion + N-ETSD T-cell biased vaccine has the potential to not only provide protection for uninfected individuals, but also to be utilized as a therapeutic for already infected patients to induce rapid clearance of the virus by activating T cells to kill the virus-infected cells, thereby reducing viral replication and lateral transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.