Summary 1.In studies on optimal foraging strategies, long-range decisions in the pursuit of resource are rarely considered. This is also the case for sympatric parasitoids, which may be confronted with the decision to accept or reject host larvae that are already parasitized by a competing species. They can be expected to reject already parasitized hosts if it is likely that they will lose the resulting intrinsic competition. However, examples of such interspecific host discrimination are rare. 2. We propose that parasitoids that are not egg-limited should reject inferior hosts only if it saves them time, and that this will be achieved mainly when the parasitoids are able to detect competitors from a distance. We tested this hypothesis using the sympatric parasitoids Cotesia marginiventris (Cresson) and Campoletis sonorensis (Cameron). 3. C. sonorensis was found to be the superior intrinsic competitor but, upon contact with a host larva, both wasps readily accepted hosts that had already been parasitized by the other species. However, in an olfactometer experiment, C. marginiventris females were found to strongly avoid the odour of their superior competitor. 4. These results are in accordance with a time optimization scenario, whereby the inferior competitor accepts competition if it costs only an egg, but avoids competition if it may save time that can be allocated to the search for more profitable hosts. 5. Models on host discrimination strategies in parasitoids had not yet considered discrimination from a distance. Long-range foraging decisions can also be expected for other organisms that have to choose between resources of varying suitability and profitability.
Abstract.A morphological study of the midgut and salivary glands of second and third instars of Gasterophilus intestinalis (De Geer) (Diptera: Oestridae) was conducted by light, scanning and transmission electron microscopy. The midgut is anteriorly delimited by a proventriculus, without caeca, and is composed of posterior foregut and anterior midgut tissue from which a double-layered peritrophic matrix is produced. The midgut can be divided into anterior, median and posterior regions on the basis of the structural and physiological variations of the columnar cells which occur along its length. Two other types of cell were identified: regenerative cells scattered throughout the columnar cells, and, more rarely, endocrine cells of two structural types (closed and open). Different secretion mechanisms (merocrine, apocrine and microapocrine) occur along the midgut epithelium. Abundant microorganisms are observed in the endoperitrophic space of the anterior midgut. The origin and nature of these microorganisms remain unknown. No structural differences are observed between the second and third instar midguts. The salivary glands of G. intestinalis second and third instars consist of a pair of elongated tubular structures connected to efferent ducts which unite to form a single deferent duct linked dorsally to the pharynx. Several intermediate cells, without cuticle, make the junction with the salivary gland epithelium layer. Cytological characteristics of the gland epithelial cells demonstrate high cellular activity and some structural variations are noticed between the two larval stages.
Background: Little information is available on the immunological aspect of parasitic Gasterophilus intestinalis (Diptera, Oestridae) larvae causing horse gastric myiasis. The objectives of this research were to analyze the protein content of larval crude extracts of the migrating second and third larvae (L2 and L3) of G. intestinalis in order to characterize the immune response of horses.
Anthelmintic resistance (AR) of small strongyle populations (cyathostomins) against products of the benzimidazole and tetrahydropyrimidine classes occurs now worldwide and there is an increasing number of reports also regarding macrocyclic lactones. Consequently, and in order to maintain an appropriate horse parasite control, alternative control schemes must be evaluated under field conditions. Here we present a six-year field study on the administration of the so-called selective or targeted selective anthelmintic treatment (SAT) concept. In this study on five horse farms in France and Switzerland, 757 fecal samples from 93 equids (90 horses, 3 ponies) have been taken twice a year (between early and late spring and between early and late autumn) from autumn 2014 to spring 2020 and processed by a McMaster technique. From a total of 757 samples, only 263 (34.7%) had a fecal egg count ≥200 EpG and needed an anthelmintic treatment. This small number of fecal samples ≥200 EpG demonstrates the considerable potential for a long-term reduction of the number of anthelmintic treatments and the anthelmintic pressure by using the SAT-programme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.