Though algorithms promise many benefits including efficiency, objectivity and accuracy, they may also introduce or amplify biases. Here we study two well-known algorithms, namely PageRank and Who-to-Follow (WTF), and show to what extent their ranks produce inequality and inequity when applied to directed social networks. To this end, we propose a directed network model with preferential attachment and homophily (DPAH) and demonstrate the influence of network structure on the rank distributions of these algorithms. Our main findings suggest that (i) inequality is positively correlated with inequity, (ii) inequality is driven by the interplay between preferential attachment, homophily, node activity and edge density, and (iii) inequity is driven by the interplay between homophily and minority size. In particular, these two algorithms reduce, replicate and amplify the representation of minorities in top ranks when majorities are homophilic, neutral and heterophilic, respectively. Moreover, when this representation is reduced, minorities may improve their visibility in the rank by connecting strategically in the network. For instance, by increasing their out-degree or homophily when majorities are also homophilic. These findings shed light on the social and algorithmic mechanisms that hinder equality and equity in network-based ranking and recommendation algorithms.
Relational inference leverages relationships between entities and links in a network to infer information about the network from a small sample. This method is often used when global information about the network is not available or difficult to obtain. However, how reliable is inference from a small labelled sample? How should the network be sampled, and what effect does it have on inference error? How does the structure of the network impact the sampling strategy? We address these questions by systematically examining how network sampling strategy and sample size affect accuracy of relational inference in networks. To this end, we generate a family of synthetic networks where nodes have a binary attribute and a tunable level of homophily. As expected, we find that in heterophilic networks, we can obtain good accuracy when only small samples of the network are initially labelled, regardless of the sampling strategy. Surprisingly, this is not the case for homophilic networks, and sampling strategies that work well in heterophilic networks lead to large inference errors. These findings suggest that the impact of network structure on relational classification is more complex than previously thought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.