Our study has gathered validity evidence for a simulation-based test for procedural robotic surgical competency in the vaginal cuff closure procedure and established a credible pass/fail standard for future proficiency-based training.
Millions of people are tested for COVID-19 daily during the pandemic, and a lack of evidence to guide optimal nasal swab testing can increase the risk of false-negative test results. This study aimed to determine the optimal insertion depth for nasal mid-turbinate and nasopharyngeal swabs. The measurements were made with a flexible endoscope during the collection of clinical specimens with a nasopharyngeal swab at a public COVID-19 test center in Copenhagen, Denmark. Participants were volunteer adults undergoing a nasopharyngeal SARS-CoV-2 rapid antigen test. All 109 participants (100%) completed the endoscopic measurements; 52 (48%) women; 103 (94%) white; mean age 34.39 (SD, 13.2) years; and mean height 176.7 (SD, 9.29) cm. The mean swab length to the posterior nasopharyngeal wall was 9.40 (SD, 0.64) cm. The mean endoscopic distance to the anterior and posterior end of the inferior turbinate was 1.95 (SD, 0.61) cm and 6.39 (SD, 0.62) cm, respectively. The mean depth to nasal mid-turbinate was calculated as 4.17 (SD, 0.48) cm. The optimal depths of insertion for nasal mid-turbinate swabs are underestimated in current guidelines compared with our findings. This study provides clinical evidence to guide the performance of anatomically correct nasal and nasopharyngeal swab specimen collection for virus testing.
Objective: Myringotomy and ventilation tube insertion (MT) is a key procedure in otorhinolaryngology and can be trained using simulation models. We aimed to systematically review the literature on models for simulation-based training and assessment of MT and supporting educational evidence. Databases Reviewed: PubMed, Embase, Cochrane Library, Web of Science, Directory of Open Access Journals. Methods: Inclusion criteria were MT training and/or skills assessment using all types of training modalities and learners. Studies were divided into 1) descriptive and 2) educational interventional/observational in the analysis. For descriptive studies, we provide an overview of available models including materials and cost. Educational studies were appraised using Kirkpatrick's level of educational outcomes, Messick's framework of validity, and a structured quality assessment tool. Results: Forty-six studies were included consisting of 21 descriptive studies and 25 educational studies. Thirty-one unique physical and three virtual reality simulation models were identified. The studies report moderate to high realism of the different simulators and trainees and educators perceive them beneficial in training MT skills. Overall, simulation-based training is found to reduce procedure time and errors, and increase performance as measured using different assessment tools. None of the studies used a contemporary validity framework and the current educational evidence is limited. Conclusion: Numerous simulation models and assessment tools have been described in the literature but educational evidence and systematic implementation into training curricula is scarce. There is especially a need to establish the effect of simulation-based training of MT in transfer to the operating room and on patient outcomes.
Proper specimen collection is the most important step to ensure accurate testing for the coronavirus disease 2019 (COVID-19) and other infectious diseases. Assessment of healthcare workers’ upper respiratory tract specimen collection skills is needed to ensure samples of high-quality clinical specimens for COVID-19 testing. This study explored the validity evidence for a theoretical MCQ-test and checklists developed for nasopharyngeal (NPS) and oropharyngeal (OPS) specimen collection skills assessment. We found good inter-item reliability (Cronbach’s alpha = 0.76) for the items of the MCQ-test and high inter-rater reliability using the checklist for the assessment of OPS and NPS skills on 0.86 and 0.87, respectively. The MCQ scores were significantly different between experts (mean 98%) and novices (mean 66%), p < 0.001, and a pass/fail score of 91% was established. We found a significant discrimination between checklist scores of experts (mean 95% score for OPS and 89% for NPS) and novices (mean 50% score for OPS and 36% for NPS), p < 0.001, and a pass/fail score was established of 76% for OPS and 61% for NPS. Further, the results also demonstrated that a group of non-healthcare educated workers can perform upper respiratory tract specimen collection comparably to experts after a short and focused simulation-based training session. This study, therefore, provides validity evidence for the use of a theoretical and practical test for upper respiratory specimens’ collection skills that can be used for competency-based training of the workers in the COVID-19 test centers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.