Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA–viral peptide interaction as the major factor modulating durable control of HIV infection.
Migraine affects over a billion individuals worldwide but its genetic underpinning remains largely unknown. Here, we performed a genome-wide association study of 102,084 migraine cases and 771,257 controls and identified 123 loci, of which 86 are previously unknown. These loci provide an opportunity to evaluate shared and distinct genetic components in the two main migraine subtypes: migraine with aura and migraine without aura. Stratification of the risk loci using 29,679 cases with subtype information indicated three risk variants that seem specific for migraine with aura (in HMOX2, CACNA1A and MPPED2), two that seem specific for migraine without aura (near SPINK2 and near FECH) and nine that increase susceptibility for migraine regardless of subtype. The new risk loci include genes encoding recent migraine-specific drug targets, namely calcitonin gene-related peptide (CALCA/CALCB) and serotonin 1F receptor (HTR1F). Overall, genomic annotations among migraine-associated variants were enriched in both vascular and central nervous system tissue/cell types, supporting unequivocally that neurovascular mechanisms underlie migraine pathophysiology.
BackgroundThe selection of beef cattle for feed efficiency (FE) traits is very important not only for productive and economic efficiency but also for reduced environmental impact of livestock. Considering that FE is multifactorial and expensive to measure, the aim of this study was to identify biological functions and regulatory genes associated with this phenotype.ResultsEight genes were differentially expressed between high and low feed efficient animals (HFE and LFE, respectively). Co-expression analyses identified 34 gene modules of which 4 were strongly associated with FE traits. They were mainly enriched for inflammatory response or inflammation-related terms. We also identified 463 differentially co-expressed genes which were functionally enriched for immune response and lipid metabolism. A total of 8 key regulators of gene expression profiles affecting FE were found. The LFE animals had higher feed intake and increased subcutaneous and visceral fat deposition. In addition, LFE animals showed higher levels of serum cholesterol and liver injury biomarker GGT. Histopathology of the liver showed higher percentage of periportal inflammation with mononuclear infiltrate.ConclusionLiver transcriptomic network analysis coupled with other results demonstrated that LFE animals present altered lipid metabolism and increased hepatic periportal lesions associated with an inflammatory response composed mainly by mononuclear cells. We are now focusing to identify the causes of increased liver lesions in LFE animals.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-2292-8) contains supplementary material, which is available to authorized users.
In the past years, there has been a remarkable development of high-throughput omics (HTO) technologies such as genomics, epigenomics, transcriptomics, proteomics and metabolomics across all facets of biology. This has spearheaded the progress of the systems biology era, including applications on animal production and health traits. However, notwithstanding these new HTO technologies, there remains an emerging challenge in data analysis. On the one hand, different HTO technologies judged on their own merit are appropriate for the identification of disease-causing genes, biomarkers for prevention and drug targets for the treatment of diseases and for individualized genomic predictions of performance or disease risks. On the other hand, integration of multi-omic data and joint modelling and analyses are very powerful and accurate to understand the systems biology of healthy and sustainable production of animals. We present an overview of current and emerging HTO technologies each with a focus on their applications in animal and veterinary sciences before introducing an integrative systems genomics framework for analysing and integrating multi-omic data towards improved animal production, health and welfare. We conclude that there are big challenges in multi-omic data integration, modelling and systems-level analyses, particularly with the fast emerging HTO technologies. We highlight existing and emerging systems genomics approaches and discuss how they contribute to our understanding of the biology of complex traits or diseases and holistic improvement of production performance, disease resistance and welfare.
BackgroundObesity is a complex metabolic condition in strong association with various diseases, like type 2 diabetes, resulting in major public health and economic implications. Obesity is the result of environmental and genetic factors and their interactions, including genome-wide genetic interactions. Identification of co-expressed and regulatory genes in RNA extracted from relevant tissues representing lean and obese individuals provides an entry point for the identification of genes and pathways of importance to the development of obesity. The pig, an omnivorous animal, is an excellent model for human obesity, offering the possibility to study in-depth organ-level transcriptomic regulations of obesity, unfeasible in humans. Our aim was to reveal adipose tissue co-expression networks, pathways and transcriptional regulations of obesity using RNA Sequencing based systems biology approaches in a porcine model.MethodsWe selected 36 animals for RNA Sequencing from a previously created F2 pig population representing three extreme groups based on their predicted genetic risks for obesity. We applied Weighted Gene Co-expression Network Analysis (WGCNA) to detect clusters of highly co-expressed genes (modules). Additionally, regulator genes were detected using Lemon-Tree algorithms.ResultsWGCNA revealed five modules which were strongly correlated with at least one obesity-related phenotype (correlations ranging from -0.54 to 0.72, P < 0.001). Functional annotation identified pathways enlightening the association between obesity and other diseases, like osteoporosis (osteoclast differentiation, P = 1.4E-7), and immune-related complications (e.g. Natural killer cell mediated cytotoxity, P = 3.8E-5; B cell receptor signaling pathway, P = 7.2E-5). Lemon-Tree identified three potential regulator genes, using confident scores, for the WGCNA module which was associated with osteoclast differentiation: CCR1, MSR1 and SI1 (probability scores respectively 95.30, 62.28, and 34.58). Moreover, detection of differentially connected genes identified various genes previously identified to be associated with obesity in humans and rodents, e.g. CSF1R and MARC2.ConclusionsTo our knowledge, this is the first study to apply systems biology approaches using porcine adipose tissue RNA-Sequencing data in a genetically characterized porcine model for obesity. We revealed complex networks, pathways, candidate and regulatory genes related to obesity, confirming the complexity of obesity and its association with immune-related disorders and osteoporosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.