Paper Conservation Department, National Gallery of Art, Washington, DC, USA A paradigm using multispectral visible and near-infrared imaging spectroscopy is presented to semiautomatically create unbiased spectral maps that guide the site selection for in situ analytical methods (e.g. fiber optic reflectance spectroscopy and X-ray fluorescence) in order to identify and map pigments in illuminated manuscripts. This approach uses low spectral resolution imaging spectroscopy to create maps of areas having the same spectral characteristics. This paradigm is demonstrated by analysis of the illuminated manuscript leaf Christ in Majesty with Twelve Apostles (workshop of Pacino di Buonaguida, c. 1320). Using this approach the primary pigments are mapped and identified as azurite, lead-tin yellow, red lead, a red lake (likely insect-derived), a copper-containing green, brown iron oxide, and lead white. Moreover, small amounts of natural ultramarine were found to be used to enhance the blue fields around Christ, and a red lake was used to highlight different colors. These results suggest that the proposed paradigm offers an improved approach to the comprehensive study of illuminated manuscripts by comparison with site-specific analytical methods alone. The choice of broad spectral bands proves successful, given the limited palette in illuminated manuscripts, and permits operation at the low light intensity required for examination of manuscripts.
Two imaging modalities based on molecular and elemental spectroscopy were used to characterize a painting by Cosimo Tura. Visible-to-near-infrared (400-1680 nm) reflectance imaging spectroscopy (RIS) and X-ray fluorescence (XRF) imaging spectroscopy were employed to identify pigments and determine their spatial distribution with higher confidence than from either technique alone. For example, Mary's red robe was modeled through the distribution of an insect-derived red lake (RIS map) and lead white (XRF lead map), rather than a layer of red lake on vermilion. The RIS image cube was also used to isolate the preparatory design by mapping the reflectance spectra associated with it. In conjunction with results from an earlier RIS study (1650-2500 nm) to map and identify the binding media, a more thorough understanding was gained of the materials and techniques used in the painting.
This paper introduces a new set of certified reference materials designed to aid scientists and conservators working in cultural heritage fields with quantitative X-ray fluorescence analysis of historical and prehistoric copper alloys. This set has been designated as the Copper CHARM Set (Cultural Heritage Alloy Reference Material Set). The Copper CHARM Set is designed to be used by a wide range of museum-, art-and archaeology-oriented scientists and conservators to help improve the accuracy and range of their calibrations for quantitativeED-XRF spectrometry of copper alloys, and also increase the number of elements that can routinely be quantified. In addition, the common use of a single core set of the reference materials is designed to significantly improve inter-laboratory reproducibility, allowing greater data sharing between researchers and thus furthering possibilities for collaborative study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.