In this paper, we investigate the existence of positive solutions for a system of nonlinear fractional differential equations nonlocal boundary value problems with parameters and p-Laplacian operator. Under different combinations of superlinearity and sublinearity of the nonlinearities, various existence results for positive solutions are derived in terms of different values of parameters via the Guo-Krasnosel'skii fixed point theorem.
In this paper we study a class of operator equations A(x, x) + B(x, x) = x in ordered Banach spaces, where A, B are two mixed monotone operators. Various theorems are established to guarantee the existence of a unique solution to the problem. In addition, associated iterative schemes have been established for finding the approximate solution converging to the fixed point of the problem. We also study the solution of the nonlinear eigenvalue equation A(x, x) + B(x, x) = λx and discuss its dependency to the parameter. Our results extend and improve many known results in this field of study. We have also successfully demonstrated the application of our results to the study of nonlinear fractional differential equations with two-point boundary conditions. c 2016 All rights reserved.Keywords: Mixed monotone operator, hypo-homogeneous mixed monotone operator, existence and uniqueness, fractional differential equation.
In this paper, we study the nonlocal fractional differential equation:continuous. The existence and uniqueness of positive solutions are obtained by means of the fixed point index theory and iterative technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.