Social behavior can alter the microbiome composition via transmission among social partners, but there have been few controlled experimental studies of gut microbiome transmission among social partners in primates. We collected longitudinal fecal samples from eight unrelated male-female pairs of marmoset monkeys prior to pairing and for 8 weeks following pairing. We then sequenced 16S rRNA to characterize the changes in the gut microbiome that resulted from the pairing. Marmoset pairs had a higher similarity in gut microbiome communities after pairing than before pairing. We discovered sex differences in the degrees of change in gut microbiome communities following pairing. Specifically, the gut microbiome communities in males exhibited greater dissimilarity from the prepairing stage (baseline) than the gut microbiome communities in females. Conversely, females showed a gradual stabilization in the rate of the gut microbiome community turnover. Importantly, we found that the male fecal samples harbored more female-source gut microbes after pairing, especially early in pairing (paired test, P < 0.05), possibly linked to sex bias in the frequencies of social behavior. From this controlled study, we report for the first time that pair-living primates undergo significant changes in gut microbiome during pairing and that females transmit more microbes to their partners than males do. The potential biases influencing which microbes are transmitted on the basis of sex and whether they are due to sex biases in other behavioral or physiological features need to be widely investigated in other nonhuman primates and humans in the future. IMPORTANCE In this controlled study, we collected longitudinal fecal samples from 16 male and female marmoset monkeys for 2 weeks prior to and for 8 weeks after pairing in male-female dyads. We report for the first time that marmoset monkeys undergo significant changes to the gut microbiome following pairing and that these changes are sex-biased; i.e., females transmit more microbes to their social partners than males do. Marmosets exhibit pair bonding behavior such as spatial proximity, physical contact, and grooming, and sex biases in these behavioral patterns may contribute to the observed sex bias in social transmission of gut microbiomes.
A flow-limited, physiologically based pharmacokinetic (PBPK) model for predicting the plasma and tissue concentrations of valnemulin after a single oral administration to rats was developed, and then the data were extrapolated to pigs so as to predict withdrawal interval in edible tissues. Blood/tissue pharmacokinetic data and blood/tissue partition coefficients for valnemulin in rats and pigs were collected experimentally. Absorption, distribution and elimination of the drug were characterized by a set of mass-balance equations. Model simulations were achieved using a commercially available software program. The rat PBPK model better predicted plasma and tissue concentrations. The correlation coefficients of the predicted and experimentally determined values for plasma, liver, kidney, lung and muscle were 0.96, 0.94, 0.96, 0.91 and 0.91, respectively. The rat model parameters were extrapolated to pigs to estimate valnemulin residue withdrawal interval in edible tissues. Correlation (R(2) ) between predicted and observed liver, kidney and muscle were 0.95, 0.97 and 0.99, respectively. Based on liver tissue residue profiles, the pig model estimated a withdrawal interval of 10 h under a multiple oral dosing schedule (5.0 mg/kg, twice daily for 7.5 days). PBPK models, such as this one, provide evidence of the usefulness in interspecies PK data extrapolation over a range of dosing scenarios and can be used to predict withdrawal interval in pigs.
The gut microbial composition and function are shaped by different factors (e.g., host diet and phylogeny). Gut microbes play an important role in host nutrition and development. The gut microbiome may be used to evaluate the host potential environmental adaptation. In this study, we focused on the coevolution of the gut microbiome of captive and translocated Père David's deer populations ( Elaphurus davidianus ; Chinese: Père David's deer). To address this, we used several different macro‐ and micro‐ecological approaches (landscape ecology, nutritional methods, microscopy, isotopic analysis, and metagenomics). In this long‐term study (2011–2014), we observed some dissimilarities in gut microbiome community and function between the captive and wild/translocated Dafeng Père David's deer populations. These differences might link microbiome composition with deer diet within a given season. The proportion of genes coding for putative enzymes (endoglucanase, beta‐glucosidase, and cellulose 1,4‐beta‐cellobiosidase) involved in cellulose digestion in the gut microbiome of the captive populations was higher than that of the translocated population, possibly because of the high proportion of cellulose, hemicellulose, and lignin in the plants most consumed by the captive populations. However, the two enzymes (natA and natB) involved in sodium transport system were enriched in the gut microbiome in translocated population, possibly because of their high salt diet (e.g., Spartina alterniflora ). Thus, our results suggested that Père David's deer gut microorganisms potentially coevolved with host diet, and reflected the local adaptation of translocated population in the new environment (e.g., new dietary plants: Spartina alterniflora ). A current problem for Père David's deer conservation is the saturation of captive populations. Given that the putative evolutionary adaptation of Père David's deer gut microbiome and its possible applications in conservation, the large area of wetlands along the Yellow Sea dominated by S. alterniflora might be the major translocation region in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.