Tumorigenesis is a complex and dynamic process, consisting of three stages: initiation, progression, and metastasis. Tumors are encircled by extracellular matrix (ECM) and stromal cells, and the physiological state of the tumor microenvironment (TME) is closely connected to every step of tumorigenesis. Evidence suggests that the vital components of the TME are fibroblasts and myofibroblasts, neuroendocrine cells, adipose cells, immune and inflammatory cells, the blood and lymphatic vascular networks, and ECM. This manuscript, based on the current studies of the TME, offers a more comprehensive overview of the primary functions of each component of the TME in cancer initiation, progression, and invasion. The manuscript also includes primary therapeutic targeting markers for each player, which may be helpful in treating tumors.
Superhydrophobic coatings have tremendous potential for applications in different fields and have been achieved commonly by increasing nanoscale roughness and lowering surface tension. Limited by the availability of either ideal nano-structural templates or simple fabrication procedures, the search of superhydrophobic coatings that are easy to manufacture and are robust in real-life applications remains challenging for both academia and industry. Herein, we report an unconventional protocol based on a single-step, stoichiometrically controlled reaction of long-chain organosilanes with water, which creates micro- to nano-scale hierarchical siloxane aggregates dispersible in industrial solvents (as the coating mixture). Excellent superhydrophobicity (ultrahigh water contact angle >170° and ultralow sliding angle <1°) has been attained on solid materials of various compositions and dimensions, by simply dipping into or spraying with the coating mixture. It has been demonstrated that these complete waterproof coatings hold excellent properties in terms of cost, scalability, robustness, and particularly the capability of encapsulating other functional materials (e.g. luminescent dyes).
The occurrence and development of tumors is a complex process involving long-term multi-factor participation. In this process, tumor cells from a set of abnormal metabolic patterns that are different from normal cells. This abnormal metabolic change is called metabolic reprogramming of tumors. Wnt signaling pathway is one of the critical signaling pathways regulating cell proliferation and differentiation. In recent years, it has been found that Wnt signaling participates in the occurrence and development of malignant tumors by affecting metabolic reprogramming. This paper reviews the role of Wnt signaling in tumor metabolic reprogramming to provide crucial theoretical guidance for targeted therapy and drug response of tumors.
Selective and fast: A flavylium derivative‐based ratiometric fluorescent probe (1) for H2S is reported. The reaction mechanism (see scheme) is based on the nucleophilic addition of H2S towards the electrically positive benzopyrylium moiety of 1, which can efficiently differentiate H2S from other competitive species. The probe exhibits a fast response toward H2S, within 10 s, which is superior to most of the reported H2S probes.
Off-the-shelf laboratory filter paper of different pore sizes and thicknesses can be modified with fluorine-free organosilanes to be superhydrophobic, patternable, and ready for quantitative assay applications. In particular, we have demonstrated that the cellulose filter paper treated with a binary hexane solution of short (methyltrichlorosilane) and long (octadecyltrichlorosilane) organosilanes exhibits remarkably high water contact angles (>150°) and low wetting hysteresis (∼10°). Beyond the optimized ratio between the two organosilanes, we have discovered that the thickness rather than the pore size dictates the resulting superhydrophobicity. Scanning electron microscopy images showed that silanization does not damage the cellulose microfibers; instead, they are coated with uniform, particulate nanostructures, which should contribute to the observed surface properties. The modified filter paper is chemically stable and mechanically durable; it can be readily patterned with UV/ozone treatment to create hydrophilic regions to prepare chemical assays for colorimetric pH and nitrite detections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.