FXR is a member of the nuclear receptor superfamily and is the primary bile acid receptor. We previously showed that FXR was required for the promotion of liver regeneration/repair after physical resection or liver injury. However, the mechanism by which FXR promotes liver regeneration/repair is still unclear. Here we showed that both hepatic-FXR and intestine-FXR contributed to promoting liver regeneration/repair after either 70% partial hepatectomy or CCl4-induced liver injury. Hepatic FXR, but not intestine FXR, is required for the induction of Foxm1b gene expression in liver during liver regeneration/repair. In contrast, intestine FXR is activated to induce FGF15 expression in intestine after liver damage. Ectopic expression of FGF15 was able to rescue the defective liver regeneration/repair in intestine-specific FXR null mice.
Conclusion
These results demonstrate that, in addition to the cell-autonomous effect of hepatic FXR, the endocrine FGF15 pathway activated by FXR in intestine also participates in the promotion of liver regeneration/repair.
Ferroptosis is an iron‐dependent form of non‐apoptotic cell death implicated in liver, brain, kidney, and heart pathology. How ferroptosis is regulated remains poorly understood. Here, we show that PPARα suppresses ferroptosis by promoting the expression of glutathione peroxidase 4 (Gpx4) and by inhibiting the expression of the plasma iron carrier TRF. PPARα directly induces Gpx4 expression by binding to a PPRE element within intron 3. PPARα knockout mice develop more severe iron accumulation and ferroptosis in the liver when fed a high‐iron diet than wild‐type mice. Ferrous iron (Fe2+) triggers ferroptosis via Fenton reactions and ROS accumulation. We further find that a rhodamine‐based "turn‐on" fluorescent probe(probe1) is suitable for the in vivo detection of Fe2+. Probe1 displays high selectivity towards Fe2+, and exhibits a stable response for Fe2+ with a concentration of 20 μM in tissue. Our data thus show that PPARα activation alleviates iron overload‐induced ferroptosis in mouse livers through Gpx4 and TRF, suggesting that PPARα may be a promising therapeutic target for drug discovery in ferroptosis‐related tissue injuries. Moreover, we identified a fluorescent probe that specifically labels ferrous ions and can be used to monitor Fe2+ in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.