Periodontal disease consists of chronic gingival inflammation characterized by both degradation of the periodontal connective tissue and alveolar bone loss. Drug therapy is used as an auxiliary treatment method in severe chronic periodontitis, aggressive periodontitis, and periodontitis-associated systemic disease. Nal-P-113, a modified antimicrobial peptide, specifically replaces the histidine residues of P-113 with the bulky amino acid β-naphthylalanine, and our previous studies have verified that this novel peptide is not toxic to the human body within a certain concentration range. The objective of the present study was to evaluate the effect of Nal-P-113 on periodontal pathogens and periodontal status in clinical studies. In a split-mouth clinical trial, the pocket depth and bleeding index values tended to decrease in the experimental group compared with those in the control group. SEM results verified that Nal-P-113 restrained the maturation of plaque. Based on real-time polymerase chain reaction, the levels of Fusobacterium nucleatum, Streptococcus gordonii, Treponema denticola, and Porphyromonas gingivalis in subgingival plaque were decreased when the subjects were given Nal-P-113. Bacterial growth curve analysis and a biofilm susceptibility assay verified that Nal-P-113 at a concentration of 20 μg/mL restrained the growth of S. gordonii, F. nucleatum, and P. gingivalis and biofilm formation. Therefore, Nal-P-113 effectively reduces periodontal pathogens and ameliorates periodontal status.
Nanotechnology is one of the most promising and decisive technologies in the world. Nanomaterials, as the primary research aspect of nanotechnology, are quite different from macroscopic materials because of their unique optical, electrical, magnetic, thermal properties, and more robust mechanical properties, which make them play an essential role in the field of materials science, biomedical field, aerospace field, and environmental energy. Different preparation methods for nanomaterials have various physical and chemical properties and are widely used in different areas. In this review, we focused on the preparation methods, including chemical, physical, and biological methods due to the properties of nanomaterials. We mainly clarified the characteristics, advantages, and disadvantages of different preparation methods. Then, we focused on the applications of nanomaterials in biomedicine, including biological detection, tumor diagnosis, and disease treatment, which provide a development trend and promising prospects for nanomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.