Recent research has suggested that music and language processing share neural resources, leading to new hypotheses about interference in the simultaneous processing of these two structures. The present study investigated the effect of a musical chord's tonal function on syntactic processing (Experiment 1) and semantic processing (Experiment 2) using a cross-modal paradigm and controlling for acoustic differences. Participants read sentences and performed a lexical decision task on the last word, which was, syntactically or semantically, expected or unexpected. The simultaneously presented (task-irrelevant) musical sequences ended on either an expected tonic or a less-expected subdominant chord. Experiment 1 revealed interactive effects between music-syntactic and linguistic-syntactic processing. Experiment 2 showed only main effects of both music-syntactic and linguistic-semantic expectations. An additional analysis over the two experiments revealed that linguistic violations interacted with musical violations, though not differently as a function of the type of linguistic violations. The present findings were discussed in light of currently available data on the processing of music as well as of syntax and semantics in language, leading to the hypothesis that resources might be shared for structural integration processes and sequencing.
Humans have remarkable statistical learning abilities for verbal speech-like materials and for nonverbal music-like materials. Statistical learning has been shown with artificial languages (AL) that consist of the concatenation of nonsense word-like units into a continuous stream. These ALs contain no cues to unit boundaries other than the transitional probabilities between events, which are high within a unit and low between units. Most AL studies have used units of regular lengths. In the present study, the ALs were based on the same statistical structures but differed in unit length regularity (i.e., whether they were made out of units of regular vs. irregular lengths) and in materials (i.e., syllables vs. musical timbres), to allow us to investigate the influence of unit length regularity on domain-general statistical learning. In addition to better performance for verbal than for nonverbal materials, the findings revealed an effect of unit length regularity, with better performance for languages with regular-(vs. irregular-) length units. This unit length regularity effect suggests the influence of dynamic attentional processes (as proposed by the dynamic attending theory; Large & Jones (Psychological Review 106: 119-159, 1999)) on domain-general statistical learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.