Diet-induced obesity (DIO) in laboratory rodents can serve as a model with which to study the pathophysiology of obesity, but obesogenic diets (high-sugar and/or high-fat) are often poorly characterised and simplistically aimed at inducing metabolic derangements for the purpose of testing the therapeutic capacity of natural products and other bioactive compounds. Consequently, our understanding of the divergent metabolic responses to different obesogenic diet formulations is limited. The aim of the present study was to characterise and compare differences in the metabolic responses induced by low-fat, medium-fat/high-sugar and high-fat diets in rats through multivariate statistical modelling. Young male Wistar rats were randomly assigned to CON (laboratory chow, low-fat), OB1 (high-sugar, medium-fat) or OB2 (high-fat) dietary groups (n = 24 each) for 17 weeks, after which metabolic responses were characterised. Projection-based multivariate analyses (principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA)) were used to explore the associations between measures of body composition and metabolism. Furthermore, we conducted a systematic literature survey to examine reporting trends in rat dietary intervention studies, and to determine how the metabolic responses observed in the present study compared to other recently published studies. The OB1 and OB2 dietary regimens resulted in distinct metabolic profiles, with OB1 characterised by perturbations in insulin homeostasis and adipose tissue secretory function, while OB2 was characterised by altered lipid and liver metabolism. This work therefore confirms, by means of direct comparison, that differences in dietary composition have a profound impact on metabolic and pathophysiological outcomes in rodent models of DIO. However, through our literature survey we demonstrate that dietary composition is not reported in the majority of rat dietary intervention studies, suggesting that the impact of dietary composition is often not considered during study design or data interpretation. This hampers the usefulness of such studies to provide enhanced mechanistic insights into DIO, and also limits the translatability of such studies within the context of human obesity.
Black South African women are more insulin resistant and have increased gluteal subcutaneous adipose tissue hypertrophy than white South African women. We tested the hypothesis that adipose tissue hypoxia and extracellular matrix gene expression in gluteal and abdominal subcutaneous adipose tissue is higher in black than white women, and associates with reduced insulin sensitivity in black women. Insulin sensitivity (frequently sampled intravenous glucose tolerance test), gluteal and abdominal subcutaneous adipose tissue mRNA levels of hypoxia- and extracellular matrix-related genes were measured in normal-weight and obese premenopausal black (n = 30) and white (n = 26) South African women at baseline, and in black women, at 5-year follow-up (n = 10). Compared to obese white women, obese black women had higher expression of hypoxia inducible factor 1, collagen Vα1 and collagen VIα1 and reduced vascular endothelial growth factor-α expression in gluteal (p < 0.05) but not abdominal subcutaneous adipose tissue depots. Independent of age and body fatness, gluteal expression of hypoxia inducible factor 1 (r = -0.55; p = 0.01), collagen Vα1 (r = -0.41; p = 0.05) and collagen VIα1 (r = -0.47; p = 0.03) correlated with reduced insulin sensitivity in black women only. Over a 5-year follow-up, changes in gluteal hypoxia inducible factor 1 (r = 0.77; p = 0.01) collagen Vα1 (r = 0.71; p = 0.02) and collagen VIα1 (r = 0.81; p < 0.01) expression correlated positively with the change in fasting insulin concentrations in black women. Compared to their white counterparts, black women expressed higher levels of genes associated with hypoxia and collagen deposition, and the associations between these genes and insulin sensitivity differed by ethnicity. We thus propose that insulin resistance in black women may be related to higher extracellular matrix and hypoxia gene expression.
Leaf teas are widely used as a purported treatment for dysregulated glucose homeostasis. The objective of this study was to systematically evaluate the clinical and cellular-metabolic evidence, published between January 2013 and May 2019, and indexed on PubMed, ScienceDirect, and Web of Science, supporting the use of leaf teas for this purpose. Fourteen randomized controlled trials (RCTs) (13 on Camellia sinensis teas) were included, with mixed results, and providing scant mechanistic information. In contrast, 74 animal and cell culture studies focusing on the pancreas, liver, muscle, and adipose tissue yielded mostly positive results and highlighted enhanced insulin signaling as a recurring target associated with the effects of teas on glucose metabolism. We conclude that more studies, including RCTs and pre-clinical studies examining teas from a wider variety of species beyond C. sinensis, are required to establish a stronger evidence base on the use of leaf teas to normalize glucose metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.