Due to its potential applications, open-domain dialogue generation has become popular and achieved remarkable progress in recent years, but sometimes suffers from generic responses. Previous models are generally trained based on 1-to-1 mapping from an input query to its response, which actually ignores the nature of 1-ton mapping in dialogue that there may exist multiple valid responses corresponding to the same query. In this paper, we propose to utilize the multiple references by considering the correlation of different valid responses and modeling the 1-ton mapping with a novel two-step generation architecture. The first generation phase extracts the common features of different responses which, combined with distinctive features obtained in the second phase, can generate multiple diverse and appropriate responses. Experimental results show that our proposed model can effectively improve the quality of response and outperform existing neural dialogue models on both automatic and human evaluations.
Recent successes of open-domain dialogue generation mainly rely on the advances of deep neural networks. The effectiveness of deep neural network models depends on the amount of training data. As it is laboursome and expensive to acquire a huge amount of data in most scenarios, how to effectively utilize existing data is the crux of this issue. In this paper, we use data augmentation techniques to improve the performance of neural dialogue models on the condition of insufficient data. Specifically, we propose a novel generative model to augment existing data, where the conditional variational autoencoder (CVAE) is employed as the generator to output more training data with diversified expressions. To improve the correlation of each augmented training pair, we design a discriminator with adversarial training to supervise the augmentation process. Moreover, we thoroughly investigate various data augmentation schemes for neural dialogue system with generative models, both GAN and CVAE. Experimental results on two open corpora, Weibo and Twitter, demonstrate the superiority of our proposed data augmentation model.
Automatic story generation is a challenging task, which involves automatically comprising a sequence of sentences or words with a consistent topic and novel wordings. Although many attention has been paid to this task and prompting progress has been made, there still exists a noticeable gap between generated stories and those created by humans, especially in terms of thematic consistency and wording novelty. To fill this gap, we propose a cache-augmented conditional variational autoencoder for story generation, where the cache module allows to improve thematic consistency while the conditional variational autoencoder part is used for generating stories with less common words by using a continuous latent variable. For combing the cache module and the autoencoder part, we further introduce an effective gate mechanism. Experimental results on ROCStories and WritingPrompts indicate that our proposed model can generate stories with consistency and wording novelty, and outperforms existing models under both automatic metrics and human evaluations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.