The need for efficient buildings to contribute to sustainable development has led to the proposal of goals and regulations in different countries linked to net zero energy objectives, following approaches specific to their regions. Such regulations are not yet developed in a developing country such as Panama. Thus, this study develops the first framework for Zero Energy Districts (ZED) in Panama based on passive and active solutions through dynamic simulation. For this, an existing urbanization area consisting of 34 residential buildings, called the existing case (EC), was studied. After undergoing a design based on the bioclimatic methodology, a redesigned case (RC) is proposed to maintain thermal comfort and reduce energy consumption. Key redesign factors are the buildings’ shape, orientation, glazing, the use of shadows, material of the walls, and the air conditioning configuration. Results showed energy consumption decreases by 37.5% when considering all buildings with natural ventilation, reaching ranges of positive net energy (+356.50 kWh/m2y). In the case of nearly ZED in Panama, the ranges could be considered between 14 and 180 kWh/m2y. This balance indicates that there is potential on site to develop zero energy districts.
The need for more efficient buildings to contribute to more sustainable development has led to the establishment of targets in different countries. European countries have presented energy plans to respond to the guidelines of achieving near-zero energy buildings (nZEB). The concept can be defined at the urban scale (nZED), being a delimited part of a city with high energy efficiency and using renewable energies within its boundaries. This research aims to carry out a numerical study in a residential development in Panama, based on a proposal to redesign it, but using bioclimatic strategies and implementing photovoltaic technology. Thus, to evaluate the feasibility of nZED in the region and to function as a preliminary study to implement regulations of this type in the country. The results indicate that the indoor comfort conditions of each residential building should be evaluated in greater depth, and energy savings of 40% were obtained by implementing the recommended bioclimatic strategies and becoming independent of air conditioning equipment. In addition, photovoltaic generation outstrips demand, making the development net energy positive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.